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10. Conclusions 
Below, we provide conclusions in two general categories: conclusions (Sec. 10.1) about 
the congestion-control algorithms we studied and conclusions (Sec. 10.2) about the 
methods we applied. Along with each set of conclusions we also provide suggestions for 
related future work.   

10.1 Conclusions about Congestion-Control Algorithms 
The simulation and modeling studies reported here enabled us to draw a range of 
conclusions about the general utility and safety of seven proposed alternate congestion-
control algorithms for the Internet. We were also able to characterize each of the 
congestion-control algorithms we studied. In the end, we developed some 
recommendations about whether it makes sense to deploy alternate congestion-control 
algorithms at large scale on the general Internet. Finally, though our study is quite 
comprehensive, we recognize the need for future work to investigate some questions that 
we did not tackle. We address these topics, in turn, below. 

10.1.1 Utility and Safety of Alternate Congestion-Control Algorithms 
Our simulation and modeling experiments showed that deploying alternate congestion-
control algorithms can provide improved user experience under specific circumstances. 
As discussed below, the nature of such circumstances bound the utility that alternate 
congestion-control algorithms may provide. In addition, the experiments showed that 
some proposed algorithms can be deployed without driving large changes in macroscopic 
behavior throughout a network. On the other hand, other proposed algorithms altered 
behavior in undesirable directions under specific spatiotemporal situations. We address 
these topics in detail.   
 
10.1.1.1 Increase Rate. One of the key questions for any data transport protocol is: How 
fast can the maximum available transfer rate be achieved? Assuming no congestion (i.e., 
no losses) protocols that can quickly converge to the maximum rate will spend the largest 
portion of a file transfer at that rate. Each TCP flow begins without any knowledge of the 
maximum available transfer rate. For this reason, TCP specifies an initial slow-start 
process where the source transmits slowly but then, as feedback arrives from a receiver, 
quickly increases the transmission rate until reaching a specified (initial slow-start) 
threshold or encountering a loss. This initial slow-start process is not altered by any of the 
proposed alternate congestion-control algorithms that we studied. 

Assuming no (or low) congestion, the setting of the initial slow-start threshold can 
be quite important when comparing goodputs experienced by users on TCP flows with 
goodput for users on flows operating under alternate congestion-control algorithms.1 
When the initial slow-start threshold is set arbitrarily high, on average all flows achieve 
                                                 
1 Note that in real TCP flows receivers may convey a receiver window (rwnd) that can restrict goodput 
quite severely because sources pace transmission based on the minimum of the congestion window (cwnd) 
and rwnd. Typically, the following holds: rwnd < cwnd. In our studies, we assume an infinite rwnd in order 
to compare the effects of congestion-control algorithms adjusting the cwnd. The goodput on many TCP 
flows in a real network might well be constrained by rwnd. In such cases, alternate congestion-control 
algorithms would provide little advantage over TCP congestion-control procedures. 
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maximum transfer rate with the same quickness. Under such situations, the goodput seen 
on TCP flows and flows running alternate algorithms appears quite comparable. Flows 
carrying short files (e.g., Web objects and document downloads) tend to complete while 
in initial slow-start, which means that alternate congestion-control procedures (restricted 
to the congestion-avoidance phase of a flow) do not operate. Even flows conveying long 
files can operate for extended periods under initial slow-start because such flows do not 
enter congestion-avoidance until encountering a loss. 

When the initial slow-start threshold is set low (e.g., 64K Bytes) all of the 
alternate congestion-control algorithms that we studied increase transmission rate more 
quickly than the linear increase provided by the TCP congestion-avoidance phase. Thus, 
under low congestion, when the initial slow-start threshold is set low compared to the 
size of files transferred (and assuming the receiver window – rwnd – is not constraining 
transmission rate) users on TCP flows will see much lower goodput than users of 
alternate congestion-control algorithms. The larger the file sizes being transferred the 
larger the goodput advantage of the alternate algorithms. The alternate congestion-control 
algorithms provide different degrees of goodput improvement over TCP congestion-
avoidance procedures. As discussed below (Sec. 10.1.2), these goodput differences can 
be tied directly to the speed with which the alternate algorithms reach the maximum 
available transmission rate. 

Under conditions of heavy congestion the setting of the initial slow-start threshold 
matters less because initial slow-start terminates upon the first packet loss and then a flow 
enters the congestion-avoidance phase, which is where the alternate congestion-control 
algorithms differ from TCP procedures. In such situations, the main difference in goodput 
experienced by users relates to the loss/recovery procedures defined by the alternate 
algorithms. We turn to this topic next. 
 
10.1.1.2 Loss/Recovery Processing. Two key questions arise when a data transport 
protocol experiences a packet loss. (1) How much should the protocol reduce 
transmission rate upon a loss? (2) How quickly should the protocol increase transmission 
rate after the reduction? TCP congestion-avoidance procedures reduce transmission rate 
by one-half on each packet loss. Subsequently, TCP congestion-avoidance procedures 
increase transmission rate linearly. The alternate congestion-control algorithms we 
studied specify various procedures for transmission rate reduction and increase following 
a lost packet. 

One group of algorithms (Scalable TCP, BIC2 and HSTCP) reduce transmission 
rate less than TCP after a packet loss. As a result, these algorithms tend to retain a higher 
transmission rate and associated buffers than is the case for TCP flows. Smaller rate 
reduction can allow these algorithms to provide established flows with higher goodputs 
following packet losses. We found this effect to increase with increasing loss rate and 
also file size. In addition, these algorithms can be somewhat unfair to algorithms (such as 
TCP) that exhibit a more reduced transmission rate following a loss, as well as to flows 
that have not had sufficient time to attain a high transmission rate prior to a loss. 

                                                 
2 Note that on repeated losses occurring close in time, BIC can reduce cwnd substantially more than TCP 
congestion-avoidance procedures; thus, on paths with very severe congestion BIC can actually provide 
lower goodput than TCP and also occupy fewer buffers. 
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A second group of algorithms (CTCP, FAST and FAST-AT) reduce transmission 
rate in half following a loss. HTCP appears to be a hybrid, reducing transmission rate 
variably, mainly between 20% and 50%. The higher reduction occurs when transmission 
rate is increasing substantially in a round-trip time and the lower reduction occurs when 
transmission rate is less variable. To obtain higher goodput, these algorithms increase 
transmission rate more quickly than TCP flows following a rate reduction. As discussed 
below (Sec. 10.1.2), the rate of increase varies with the specific algorithm. Typically, 
HTCP and CTCP are less aggressive than FAST and FAST-AT when increasing 
transmission rate after a reduction. FAST-AT will be less aggressive when sufficient 
congestion exists to force a reduction in the  parameter. An aggressive rate increase 
following a rate reduction can induce additional losses. When such losses affect TCP 
flows, then linear recovery procedures lead to lower goodputs. Under severe congestion, 
CTCP and HTCP can provide better goodput than FAST and FAST-AT, which can 
underperform TCP. 

In areas and at times of extreme congestion, most of the alternate algorithms we 
studied include procedures to adopt TCP congestion-avoidance behavior. These 
procedures appear motivated by the theory that when congestion is sufficiently severe 
then existing TCP behavior provides the best approach to fairly share the limited 
available transmission rate. The most typical technique employed is to set a low-window 
threshold. When the congestion window (cwnd) is below the threshold then TCP 
congestion-avoidance is used. When cwnd is above the threshold then alternate 
congestion-avoidance procedures are used. Specific values for the threshold vary among 
the alternate congestion-control algorithms. The combination of different thresholds and 
different file sizes can lead to modest differences in user goodputs. 

HTCP handles adaptation to TCP procedures somewhat differently than most 
other alternate algorithms. After a loss, HTCP adopts linear rate increase for a time. The 
time period is an HTCP parameter, set in these experiments to one second. We found that 
HTCP then adapts to TCP linear increase after every loss, regardless of file size or cwnd 
value. For larger files, which tend to have higher cwnd and to experience more losses 
during transmission, this approach tends to lower goodput significantly relative to other 
alternate algorithms, which do not adopt linear increase after every loss. 

 FAST and FAST-AT do not use TCP congestion-avoidance procedures under 
any circumstances. In times and areas of heavy congestion, failure to adopt less 
aggressive rate increase can lead to oscillatory behavior and to an associated increase in 
loss rate. Increased losses lead to lower user goodputs. FAST-AT does somewhat better 
under heavy congestion because the  parameter can be lowered; this causes less 
aggressive rate increases. Still, under many conditions, FAST-AT can exhibit a similar 
increased loss rate to FAST. 
 
10.1.1.3 Fairness. Comparing alternate congestion-control algorithms with respect to 
TCP fairness can be somewhat difficult because the alternate algorithms are designed to 
give better goodput than TCP for large file transfers on high bandwidth-delay paths. 
Thus, for example, all of the alternate algorithms can increase transmission rate more 
quickly than TCP given a low initial slow-start threshold and large file sizes. Further, all 
alternate algorithms take steps to provide loss/recovery improvements over the standard 
TCP congestion-avoidance procedures. On the other hand, most of the alternate 
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algorithms take steps to adopt TCP congestion-avoidance procedures when congestion is 
sufficiently high. Given these factors, one would expect all alternate congestion-control 
algorithms to provide better goodput than TCP under optimal conditions. In addition, 
most of the alternate algorithms are assured of performing no worse than TCP under 
suboptimal conditions. The usual measures of fairness do not apply in such circumstances 
because they would tend to measure how much of a goodput advantage a given alternate 
algorithm provides over TCP procedures. We measured fairness by ranking the average 
goodput achieved by TCP flows when they competed with each alternate congestion-
control algorithm under the same conditions. We considered the average rank across four 
file sizes: Web objects, documents, software service packs and movies. In this way, we 
could tease out the relative TCP fairness of the alternate algorithms.  

We found that CTCP and HTCP were most fair to TCP flows. We found FAST-
AT third fairest to TCP flows under high initial slow-start threshold. Under low initial 
slow-start threshold, FAST-AT proved more unfair to TCP flows because of its quick 
increase in transmission rate upon entering congestion avoidance. Injecting more FAST-
AT packets into the network induced more losses in TCP flows, which could not recover 
very quickly. 

We found Scalable TCP, BIC and FAST to be most unfair to TCP flows. 
Established Scalable and BIC flows (large files) tended to maintain higher transmission 
rates after losses, while competing TCP flows cut transmission rates in half. By 
maintaining higher transmission rates and, thus, more buffer space, Scalable and BIC 
flows induced more losses in TCP flows. FAST could recover more quickly from losses 
than TCP flows and so FAST flows could occupy more buffers and induce more losses in 
TCP flows. In addition, like FAST-AT, FAST exhibited unfairness under low initial 
slow-start threshold because of its quick increase in transmission rate upon entering 
congestion avoidance. 

HSTCP appeared moderately fair to TCP flows, especially under conditions of 
lower congestion and under a low initial slow-start threshold. HSTCP showed TCP 
unfairness, similar to Scalable TCP, under conditions of heavy congestion. 

We believe that Scalable TCP, BIC and HSTCP could also be unfair to competing 
flows that are newly arriving. Given that some large flows operating under Scalable, BIC 
and HSTCP have established relatively high transmission rates and associated large 
buffer state and that newly arriving flows induce losses, the established flows will not 
reduce transmission rate very much and will maintain large buffer state. The newly 
arriving flows will be forced into congestion avoidance on the loss. Further, Scalable and 
HSTCP do not increase transmission rate very fast early in a flow’s life; thus, the newly 
arriving flows will face difficulty increasing transmission rate. 
 
10.1.1.4 Utility Bounds. We showed that alternate congestion-control protocols could 
provide increased utlity (goodput) for users; however, we also found that this increased 
utility would be maximized only under specific, bounded circumstances. First, the rwnd 
must not be constraining flow transmission rate. Second, a flow must be using a relatively 
low initial slow-start threshold. Third, a flow must be transmitting a large file. Fourth, a 
flow’s packets must be transiting a relatively uncongested path (i.e., experiencing only 
sporadic losses from congestion or corruption) or else users must be willing to accept 
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marked unfairness (e.g., as seen with Scalable TCP) in trade for increased goodput. These 
bounds arise from some simple factors. 

 If a flow is restrained by receipt of a relatively small rwnd, then the ability of 
alternate congestion-control regimes to increase to a high cwnd cannot be used to 
transmit faster on a flow. Assuming rwnd does not constrain flow goodput, flows can 
increase goodput in concert with cwnd by using slow-start to discover the maximum 
transmission rate. Given a high initial slow-start threshold, then all flows can discover the 
maximum cwnd with the same quickness. In this case, TCP flows would reach maximum 
cwnd on average with the same pace as flows running alternate algorithms. Only when 
the initial slow-start threshold is low, forcing entry into congestion avoidance, could 
flows using alternate algorithms reach maximum cwnd more quickly than TCP. If flows 
are transferring large files, then the ability to reach maximum transmission rate quickly 
provides a substantial goodput advantage: the larger the file, the greater the advantage. 
Under small files the transmission could complete under initial slow-start and, thus, the 
advantage inherent in congestion-avoidance increase procedures for the alternate 
algorithms would not be realized. When flows transit heavily congested paths in the 
network, then most of the alternate congestion-control algorithms adopt TCP congestion-
avoidance procedures, which negate any goodput advantage over TCP flows. Though 
FAST and FAST-AT do not adopt TCP congestion-avoidance procedures, we found that 
heavy congestion can cause oscillation in the transmission rate, which leads to higher loss 
rates, more retransmissions and lower goodput. 

We are unable to determine how likely a particular flow is to operate under the 
bounded circumstances required for alternate congestion-control algorithms to provide 
improved goodput over TCP. Certainly it would be possible to engineer a network, or 
segments of a network, to provide specific users with high utility from alternate 
congestion-control algorithms. On the other hand, we suspect a rather low probability for 
such circumstances to arise generally in a network. Thus, we conclude that alternate 
congestion-control algorithms can provide improved user goodput; however, most users 
seem unlikely to benefit very often.   
 
10.1.1.5 Safety. Given that on occasion some users could benefit from the increased 
goodputs available from alternate congestion-control algorithms, we need to consider 
whether widespread deployment of such algorithms could induce undesirable 
macroscopic characteristics into the network. In other words, are there significant costs 
that might offset the modest benefits associated with deploying alternate congestion-
control algorithms? We can answer this question only in part because we simulated 
networks that used either a single congestion-control regime or a single alternate 
congestion-control algorithm mixed with TCP congestion-control procedures. There 
could be additional cautionary findings that arise from a heterogeneous mixture of 
alternate congestion-control algorithms. We postpone such findings to future work. 

  In our experiments, we simulated a wide range of conditions and we considered 
numerous scenarios comparing network behavior under specific alternate congestion-
control algorithms, sometimes mixed with TCP procedures. For most algorithms under 
most conditions, we found little significant change in macroscopic network 
characteristics. One exception relates to FAST and FAST-AT. In spatiotemporal realms 
with high congestion, where there were insufficient buffers to support the flows transiting 
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specific routers, FAST and FAST-AT entered an oscillatory behavior where the flow 
cwnd increased and decreased rapidly with large amplitude. Under these conditions, the 
network showed increased loss and retransmission rates, a higher number of flows 
pending in the connecting state and a lower number of flows completed over time. Thus, 
FAST and FAST-AT should be deployed on a wide scale only with great care. There 
appears to be some possibility that FAST could cause significant degradation in network 
performance in selected areas and for selected users. We recommend the need for 
additional study of FAST and FAST-AT prior to widespread deployment and use on the 
Internet.  

10.1.2 Characteristics of Individual Congestion-Control Algorithms 
Below, we provide a brief summary of the characteristics found from our experiments for 
each alternate congestion-control algorithm. We discuss the algorithms in alphabetical 
order. 
 
10.1.2.1 BIC. Clearly, among the seven algorithms we studied, BIC is the most complex 
to code and implement, requiring a potentially substantial amount of processing to adjust 
the cwnd. BIC uses standard TCP congestion-avoidance procedures when cwnd is below 
a low-window threshold (14 packets, here). Under congestion with losses spaced 
sufficiently in time, BIC reduces cwnd less quickly than standard TCP; thus, BIC can 
achieve higher goodputs under sporadic losses by maintaining a high transmission rate 
and associated buffer state. This can be somewhat unfair to newly arriving flows. On the 
other hand, when congestion becomes severe, with losses spaced closely in time, BIC 
reduces cwnd much more quickly than TCP. Under such circumstances, BIC can take 
substantial time (average 71.3 s in our experiments) to recover maximum goodput after 
congestion eases. When considering the rate of increase in transmission speed under low 
congestion after reaching initial slow-start threshold, BIC averaged about 18.8 s to reach 
maximum transfer speed on long-lived flows. This rate of increase ranked fifth (of six) 
overall, and was competitive with HTCP, Scalable TCP and HSTCP. 

  
10.1.2.2 CTCP. The algorithm for CTCP requires periodic processing to adjust an 
auxiliary delay window (dwnd), which increases the processing cost beyond that found in 
standard TCP congestion control. Under congestion, CTCP reduces transmission rate by 
one-half and then recovers relatively quickly. The advantage of CTCP recovery 
procedures appears most obvious after a period of severe congestion on a path. Under 
easing congestion, dwnd can increase quite quickly. Since CTCP augments the cwnd with 
the dwnd, transmission rate can also increase quickly – returning to maximum rate in an 
average 2.9 s in our experiments. In fact, in some situations, the rate of increase in dwnd 
appears unbounded. CTCP implementations should probably require a bound on 
maximum dwnd. Under periods of heavier congestion, increase in dwnd is constrained. In 
addition, the CTCP algorithm appears quite fair to competing CTCP flows as well as 
TCP flows. CTCP had the highest default low-window threshold (41 packets, here) 
among the algorithms we studied. Further, CTCP averaged about 7.9 s to reach maximum 
transfer speed on long-lived flows under low congestion and low initial slow-start 
threshold. This rate of increase ranked second overall behind only FAST and FAST-AT, 
which tied for first. 
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10.1.2.3 FAST. The algorithm for FAST requires periodic processing to adjust the target 
cwnd. While each adjustment demands little computation, the default periodicity (20 ms, 
here) can require multiple adjustments within a single round-trip. FAST does not have a 
low-window threshold; thus, after initial slow-start, FAST flows never use standard TCP 
congestion-avoidance procedures. Under congestion, FAST reduces transmission rate by 
one-half and then recovers very quickly. The advantage of FAST recovery speed appears 
under both sporadic losses and when congestion eases following a period of severe 
congestion on a path. Under easing congestion, FAST recovered maximum transmission 
rate in an average of 6.6 s in our experiments. On the other hand, for flows transiting 
congested areas, with insufficient buffer space for all flows, FAST exhibits oscillatory 
behavior that increases losses and, thus, retransmissions, which reduces user goodput. 
Under severe conditions, FAST causes an increase in flows pending in the connecting 
state because SYN packets are loss with increased probability. In addition, FAST can 
significantly reduce the number of flows completed over time in a network. Among the 
algorithms we studied, FAST achieves maximum available transmission rate in the 
shortest time (3.7 s average) on long-lived flows under low congestion and low initial 
slow-start threshold. The ability of FAST to accelerate transmission rate led to superior 
goodputs (under low congestion and low initial slow-start threshold) for file sizes larger 
than Web objects, and the advantage of FAST increased with file size. The ability of 
FAST to quickly attain high transmission rates for large files tended to induce losses in 
competing flows. Since TCP flows could not recover quickly, FAST flows could attain 
much higher goodputs than competing TCP flows. 
 
10.1.2.4 FAST-AT. The FAST-AT algorithm augments FAST with periodic procedures to 
monitor throughput and tune the  parameter used when adjusting the target cwnd. 
Without  tuning, FAST sets the  parameter to a fixed value. FAST-AT monitors 
throughput every round-trip time and tunes the  parameter periodically (every 200 s, 
here). As throughput improves past specified thresholds  is increased and as throughput 
declines past specified thresholds  is decreased. FAST-AT exhibits many of the same 
positive and negative properties as FAST. The main difference was that, under severe and 
sustained congestion, FAST-AT reduced the  parameter from a default setting of 200 to 
as low as 8. In such, circumstances FAST-AT recovers much more slowly than FAST. 
When throughput begins increasing, FAST-AT adjusts the  parameter only every 200 s 
and must make two adjustments (8 to 20 followed by 20 to 200) before reaching the 
maximum recovery rate. In our experiments, when recovering from sustained periods of 
heavy congestion, FAST-AT took longer (26 s average) to reach maximum transmission 
rate than all alternate algorithms except BIC. On the other hand, by recovering 
transmission rate more slowly under heavy congestion, FAST-AT proved more TCP 
friendly than FAST. This occurred because under such circumstances FAST-AT did not 
induce as many losses in competing TCP flows.   
 
10.1.2.5 HSTCP. The HSTCP algorithm is a relatively straightforward; updating the 
cwnd no more frequently than standard TCP. The HSTCP cwnd updates involve 
somewhat costly logarithmic and exponentiation operations. HSTCP uses standard TCP 
congestion-avoidance procedures when the cwnd is below a low-window threshold (31 
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packets, here). HSTCP reduces cwnd less on a loss than standard TCP and provides more 
than linear increase in cwnd during congestion avoidance. Under both sporadic and heavy 
congestion, HSTCP retains a higher transmission rate (and associated buffers) than TCP. 
By maintaining more buffered packets, HSTCP can induce losses in competing flows. In 
such situations, newly arriving HSTCP flows can have difficulty increasing transmission 
rate, especially on paths with longer propagation delays. In addition, losses induced on 
competing TCP flows hurt goodput for TCP users because TCP recovers only linearly. 
When recovering from periods of sustained heavy congestion, HSTCP performed third 
best (10 s average) in our experiments; however, the short recovery time can be attributed 
mainly to the fact that, in comparable situations, HSTCP flows did not reduce 
transmission rate as much as most other congestion-control algorithms. Under low 
congestion and low initial slow-start threshold, HSTCP achieved maximum transmission 
rate more slowly (22.4 s average) than all other alternate congestion-control algorithms 
we studied.   
 
10.1.2.6 HTCP. The HTCP algorithm requires a periodic (250 ms, here) process to 
monitor flow throughput. HTCP uses standard TCP congestion-avoidance procedures for 
a specified period (1 s, here) after a packet loss. Under congestion, HTCP behaves like 
standard TCP congestion avoidance. The heavier the congestion, the more time HTCP 
spends using TCP procedures. When recovering from periods of sustained heavy 
congestion, HTCP performed fourth best (10 s average) in our experiments. Under 
sporadic losses, HTCP can spend too much time using TCP’s linear increase. In our 
experiments, this trait led HTCP to provide lower goodput than other alternate 
congestion-control algorithms on large files. On the other hand, by adopting TCP 
congestion-avoidance procedures following packet loss, HTCP is quite TCP friendly. 
Under low congestion and low initial slow-start threshold, HTCP achieved maximum 
transmission rate somewhat slowly (16.6 s average), comparable to BIC, HSTCP and 
Scalable TCP, but significantly slower than CTCP, FAST and FAST-AT.  
 
10.1.2.7 Scalable TCP. The Scalable TCP algorithm is a small modification of standard 
TCP congestion-avoidance. Scalable TCP increases cwnd by a constant on each 
acknowledgment and decreases cwnd by 12.5% on each loss. In addition, Scalable adopts 
standard TCP congestion-avoidance procedures when cwnd is below a low-window 
threshold (16 packets, here). Under congestion, established Scalable TCP flows do not 
reduce transmission rate very quickly. By maintaining more buffered packets, Scalable 
can induce losses in competing flows. In such situations, newly arriving Scalable flows 
can have difficulty increasing transmission rate, especially on paths with longer 
propagation delays. In addition, losses induced on competing TCP flows hurt goodput for 
TCP users because TCP recovers only linearly. When recovering from periods of 
sustained heavy congestion, Scalable performed fifth best (22.5 s average) in our 
experiments; however, the recovery time can be attributed mainly to the fact that, in 
comparable situations, Scalable flows did not reduce transmission rate as much as most 
other congestion-control algorithms. Under low congestion and low initial slow-start 
threshold, Scalable TCP achieved maximum transmission rate somewhat slowly (17.8 s 
average). In fact, Scalable increased transmission rate very slowly for the first few 
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seconds of long-lived file transfers, which means that Scalable provides a steep increase 
in transmission rate only for large files. 

10.1.3 Recommendations 
Under some circumstances, users can benefit from adopting alternate congestion-control 
algorithms to transfer files on the Internet. For that reason, it makes sense to deploy such 
algorithms into computers attached to the Internet. Of course, the probability appears 
quite low that a specific user will see benefits on any particular file transfer. Among the 
alternate congestion-control algorithms we studied, CTCP appears to provide the best 
balance of properties. Under low congestion, CTCP can increase transfer rate relatively 
quickly when operating in the congestion-avoidance phase. Further, CTCP reduces 
transmission rate relatively quickly in the face of sustained congestion and recovers to the 
maximum transmission rate quite quickly when congestion eases. CTCP appears 
relatively friendly to flows using standard TCP congestion-control procedures. CTCP, 
along with most of the other alternate congestion-control algorithms we studied, is 
unlikely to induce large shifts in the macroscopic behavior of the Internet. FAST and 
FAST-AT have some appealing properties, especially with respect to achieving 
maximum transmission rate quickly on high-bandwidth, long-delay paths and recovering 
quickly from sporadic losses. Unfortunately, when transiting highly congested paths with 
insufficient buffers to support the flow volume, FAST and FAST-AT can enter an 
oscillatory regime that could significantly increase loss and retransmission rates. Flows 
transiting affected areas would take longer to connect and complete and would receive 
lower goodputs.  

10.1.4 Future Work 
We studied seven proposed replacement congestion-control mechanisms for the Internet. 
Despite the comprehensive nature of our study, more work remains to be done in at least 
four directions. First, we limited our study to a bounded set of alternate congestion-
control algorithms for which we could find empirical data against which to validate our 
simulations. Researchers have proposed many congestion-control algorithms that were 
not included in our study; thus, one direction for future work is to consider the behavior 
of additional algorithms. Of particular interest is CUBIC, which has replaced BIC as the 
congestion-control algorithm enabled by default in Linux. 

Second, we have not considered scenarios where multiple alternate congestion-
control algorithms are mixed together in the same network. Increasing the heterogeneity 
of algorithms might reveal additional insights about the advantages and disadvantage of 
the various algorithms, as well as uncover undesirable macroscopic behaviors resulting 
from such mixtures. Where undesirable behaviors do not appear, then such a study would 
increase confidence in the safety of deploying alternate congestion-control regimes. Of 
course, conducting such a study would likely require substantial increase in demand for 
computation resources in order to simulate enough network evolution to accumulate 
sufficient samples to reveal statistically significant behavioral patterns. 

Third, we have not validated our findings against live, controlled experiments 
configured in GENI or a similar test bed environment. Conducting such a validation 
would substantially increase confidence in the findings of our study. We intend to 
undertake such a validation as soon as we can gain access to sufficient resources to 
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support our experiments. In the meantime, we also plan to consider how we might 
attempt to validate our findings using test environments of smaller scale. One way to 
approach this may be to make predictions about behaviors we should see replicated even 
at smaller scale than the network sizes and speeds we simulated. 

Fourth, our study revealed various strengths and weaknesses in the congestion-
control algorithms we investigated. Future researchers could exploit our findings to 
propose algorithm improvements that compensate for identified weaknesses, while 
retaining strengths. Further, our general findings may also help other researchers to 
improve future designs for additional congestion-control algorithms. 

10.2 Conclusions about Methods 
SEE ON-LINE STUDY  


