
Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 10-1

10. Conclusions
Below, we provide conclusions in two general categories: conclusions (Sec. 10.1) about
the congestion-control algorithms we studied and conclusions (Sec. 10.2) about the
methods we applied. Along with each set of conclusions we also provide suggestions for
related future work.

10.1 Conclusions about Congestion-Control Algorithms
The simulation and modeling studies reported here enabled us to draw a range of
conclusions about the general utility and safety of seven proposed alternate congestion-
control algorithms for the Internet. We were also able to characterize each of the
congestion-control algorithms we studied. In the end, we developed some
recommendations about whether it makes sense to deploy alternate congestion-control
algorithms at large scale on the general Internet. Finally, though our study is quite
comprehensive, we recognize the need for future work to investigate some questions that
we did not tackle. We address these topics, in turn, below.

10.1.1 Utility and Safety of Alternate Congestion-Control Algorithms
Our simulation and modeling experiments showed that deploying alternate congestion-
control algorithms can provide improved user experience under specific circumstances.
As discussed below, the nature of such circumstances bound the utility that alternate
congestion-control algorithms may provide. In addition, the experiments showed that
some proposed algorithms can be deployed without driving large changes in macroscopic
behavior throughout a network. On the other hand, other proposed algorithms altered
behavior in undesirable directions under specific spatiotemporal situations. We address
these topics in detail.

10.1.1.1 Increase Rate. One of the key questions for any data transport protocol is: How
fast can the maximum available transfer rate be achieved? Assuming no congestion (i.e.,
no losses) protocols that can quickly converge to the maximum rate will spend the largest
portion of a file transfer at that rate. Each TCP flow begins without any knowledge of the
maximum available transfer rate. For this reason, TCP specifies an initial slow-start
process where the source transmits slowly but then, as feedback arrives from a receiver,
quickly increases the transmission rate until reaching a specified (initial slow-start)
threshold or encountering a loss. This initial slow-start process is not altered by any of the
proposed alternate congestion-control algorithms that we studied.

Assuming no (or low) congestion, the setting of the initial slow-start threshold can
be quite important when comparing goodputs experienced by users on TCP flows with
goodput for users on flows operating under alternate congestion-control algorithms.1
When the initial slow-start threshold is set arbitrarily high, on average all flows achieve

1 Note that in real TCP flows receivers may convey a receiver window (rwnd) that can restrict goodput
quite severely because sources pace transmission based on the minimum of the congestion window (cwnd)
and rwnd. Typically, the following holds: rwnd < cwnd. In our studies, we assume an infinite rwnd in order
to compare the effects of congestion-control algorithms adjusting the cwnd. The goodput on many TCP
flows in a real network might well be constrained by rwnd. In such cases, alternate congestion-control
algorithms would provide little advantage over TCP congestion-control procedures.

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 10-2

maximum transfer rate with the same quickness. Under such situations, the goodput seen
on TCP flows and flows running alternate algorithms appears quite comparable. Flows
carrying short files (e.g., Web objects and document downloads) tend to complete while
in initial slow-start, which means that alternate congestion-control procedures (restricted
to the congestion-avoidance phase of a flow) do not operate. Even flows conveying long
files can operate for extended periods under initial slow-start because such flows do not
enter congestion-avoidance until encountering a loss.

When the initial slow-start threshold is set low (e.g., 64K Bytes) all of the
alternate congestion-control algorithms that we studied increase transmission rate more
quickly than the linear increase provided by the TCP congestion-avoidance phase. Thus,
under low congestion, when the initial slow-start threshold is set low compared to the
size of files transferred (and assuming the receiver window – rwnd – is not constraining
transmission rate) users on TCP flows will see much lower goodput than users of
alternate congestion-control algorithms. The larger the file sizes being transferred the
larger the goodput advantage of the alternate algorithms. The alternate congestion-control
algorithms provide different degrees of goodput improvement over TCP congestion-
avoidance procedures. As discussed below (Sec. 10.1.2), these goodput differences can
be tied directly to the speed with which the alternate algorithms reach the maximum
available transmission rate.

Under conditions of heavy congestion the setting of the initial slow-start threshold
matters less because initial slow-start terminates upon the first packet loss and then a flow
enters the congestion-avoidance phase, which is where the alternate congestion-control
algorithms differ from TCP procedures. In such situations, the main difference in goodput
experienced by users relates to the loss/recovery procedures defined by the alternate
algorithms. We turn to this topic next.

10.1.1.2 Loss/Recovery Processing. Two key questions arise when a data transport
protocol experiences a packet loss. (1) How much should the protocol reduce
transmission rate upon a loss? (2) How quickly should the protocol increase transmission
rate after the reduction? TCP congestion-avoidance procedures reduce transmission rate
by one-half on each packet loss. Subsequently, TCP congestion-avoidance procedures
increase transmission rate linearly. The alternate congestion-control algorithms we
studied specify various procedures for transmission rate reduction and increase following
a lost packet.

One group of algorithms (Scalable TCP, BIC2 and HSTCP) reduce transmission
rate less than TCP after a packet loss. As a result, these algorithms tend to retain a higher
transmission rate and associated buffers than is the case for TCP flows. Smaller rate
reduction can allow these algorithms to provide established flows with higher goodputs
following packet losses. We found this effect to increase with increasing loss rate and
also file size. In addition, these algorithms can be somewhat unfair to algorithms (such as
TCP) that exhibit a more reduced transmission rate following a loss, as well as to flows
that have not had sufficient time to attain a high transmission rate prior to a loss.

2 Note that on repeated losses occurring close in time, BIC can reduce cwnd substantially more than TCP
congestion-avoidance procedures; thus, on paths with very severe congestion BIC can actually provide
lower goodput than TCP and also occupy fewer buffers.

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 10-3

A second group of algorithms (CTCP, FAST and FAST-AT) reduce transmission
rate in half following a loss. HTCP appears to be a hybrid, reducing transmission rate
variably, mainly between 20% and 50%. The higher reduction occurs when transmission
rate is increasing substantially in a round-trip time and the lower reduction occurs when
transmission rate is less variable. To obtain higher goodput, these algorithms increase
transmission rate more quickly than TCP flows following a rate reduction. As discussed
below (Sec. 10.1.2), the rate of increase varies with the specific algorithm. Typically,
HTCP and CTCP are less aggressive than FAST and FAST-AT when increasing
transmission rate after a reduction. FAST-AT will be less aggressive when sufficient
congestion exists to force a reduction in the parameter. An aggressive rate increase
following a rate reduction can induce additional losses. When such losses affect TCP
flows, then linear recovery procedures lead to lower goodputs. Under severe congestion,
CTCP and HTCP can provide better goodput than FAST and FAST-AT, which can
underperform TCP.

In areas and at times of extreme congestion, most of the alternate algorithms we
studied include procedures to adopt TCP congestion-avoidance behavior. These
procedures appear motivated by the theory that when congestion is sufficiently severe
then existing TCP behavior provides the best approach to fairly share the limited
available transmission rate. The most typical technique employed is to set a low-window
threshold. When the congestion window (cwnd) is below the threshold then TCP
congestion-avoidance is used. When cwnd is above the threshold then alternate
congestion-avoidance procedures are used. Specific values for the threshold vary among
the alternate congestion-control algorithms. The combination of different thresholds and
different file sizes can lead to modest differences in user goodputs.

HTCP handles adaptation to TCP procedures somewhat differently than most
other alternate algorithms. After a loss, HTCP adopts linear rate increase for a time. The
time period is an HTCP parameter, set in these experiments to one second. We found that
HTCP then adapts to TCP linear increase after every loss, regardless of file size or cwnd
value. For larger files, which tend to have higher cwnd and to experience more losses
during transmission, this approach tends to lower goodput significantly relative to other
alternate algorithms, which do not adopt linear increase after every loss.

 FAST and FAST-AT do not use TCP congestion-avoidance procedures under
any circumstances. In times and areas of heavy congestion, failure to adopt less
aggressive rate increase can lead to oscillatory behavior and to an associated increase in
loss rate. Increased losses lead to lower user goodputs. FAST-AT does somewhat better
under heavy congestion because the parameter can be lowered; this causes less
aggressive rate increases. Still, under many conditions, FAST-AT can exhibit a similar
increased loss rate to FAST.

10.1.1.3 Fairness. Comparing alternate congestion-control algorithms with respect to
TCP fairness can be somewhat difficult because the alternate algorithms are designed to
give better goodput than TCP for large file transfers on high bandwidth-delay paths.
Thus, for example, all of the alternate algorithms can increase transmission rate more
quickly than TCP given a low initial slow-start threshold and large file sizes. Further, all
alternate algorithms take steps to provide loss/recovery improvements over the standard
TCP congestion-avoidance procedures. On the other hand, most of the alternate

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 10-4

algorithms take steps to adopt TCP congestion-avoidance procedures when congestion is
sufficiently high. Given these factors, one would expect all alternate congestion-control
algorithms to provide better goodput than TCP under optimal conditions. In addition,
most of the alternate algorithms are assured of performing no worse than TCP under
suboptimal conditions. The usual measures of fairness do not apply in such circumstances
because they would tend to measure how much of a goodput advantage a given alternate
algorithm provides over TCP procedures. We measured fairness by ranking the average
goodput achieved by TCP flows when they competed with each alternate congestion-
control algorithm under the same conditions. We considered the average rank across four
file sizes: Web objects, documents, software service packs and movies. In this way, we
could tease out the relative TCP fairness of the alternate algorithms.

We found that CTCP and HTCP were most fair to TCP flows. We found FAST-
AT third fairest to TCP flows under high initial slow-start threshold. Under low initial
slow-start threshold, FAST-AT proved more unfair to TCP flows because of its quick
increase in transmission rate upon entering congestion avoidance. Injecting more FAST-
AT packets into the network induced more losses in TCP flows, which could not recover
very quickly.

We found Scalable TCP, BIC and FAST to be most unfair to TCP flows.
Established Scalable and BIC flows (large files) tended to maintain higher transmission
rates after losses, while competing TCP flows cut transmission rates in half. By
maintaining higher transmission rates and, thus, more buffer space, Scalable and BIC
flows induced more losses in TCP flows. FAST could recover more quickly from losses
than TCP flows and so FAST flows could occupy more buffers and induce more losses in
TCP flows. In addition, like FAST-AT, FAST exhibited unfairness under low initial
slow-start threshold because of its quick increase in transmission rate upon entering
congestion avoidance.

HSTCP appeared moderately fair to TCP flows, especially under conditions of
lower congestion and under a low initial slow-start threshold. HSTCP showed TCP
unfairness, similar to Scalable TCP, under conditions of heavy congestion.

We believe that Scalable TCP, BIC and HSTCP could also be unfair to competing
flows that are newly arriving. Given that some large flows operating under Scalable, BIC
and HSTCP have established relatively high transmission rates and associated large
buffer state and that newly arriving flows induce losses, the established flows will not
reduce transmission rate very much and will maintain large buffer state. The newly
arriving flows will be forced into congestion avoidance on the loss. Further, Scalable and
HSTCP do not increase transmission rate very fast early in a flow’s life; thus, the newly
arriving flows will face difficulty increasing transmission rate.

10.1.1.4 Utility Bounds. We showed that alternate congestion-control protocols could
provide increased utlity (goodput) for users; however, we also found that this increased
utility would be maximized only under specific, bounded circumstances. First, the rwnd
must not be constraining flow transmission rate. Second, a flow must be using a relatively
low initial slow-start threshold. Third, a flow must be transmitting a large file. Fourth, a
flow’s packets must be transiting a relatively uncongested path (i.e., experiencing only
sporadic losses from congestion or corruption) or else users must be willing to accept

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 10-5

marked unfairness (e.g., as seen with Scalable TCP) in trade for increased goodput. These
bounds arise from some simple factors.

 If a flow is restrained by receipt of a relatively small rwnd, then the ability of
alternate congestion-control regimes to increase to a high cwnd cannot be used to
transmit faster on a flow. Assuming rwnd does not constrain flow goodput, flows can
increase goodput in concert with cwnd by using slow-start to discover the maximum
transmission rate. Given a high initial slow-start threshold, then all flows can discover the
maximum cwnd with the same quickness. In this case, TCP flows would reach maximum
cwnd on average with the same pace as flows running alternate algorithms. Only when
the initial slow-start threshold is low, forcing entry into congestion avoidance, could
flows using alternate algorithms reach maximum cwnd more quickly than TCP. If flows
are transferring large files, then the ability to reach maximum transmission rate quickly
provides a substantial goodput advantage: the larger the file, the greater the advantage.
Under small files the transmission could complete under initial slow-start and, thus, the
advantage inherent in congestion-avoidance increase procedures for the alternate
algorithms would not be realized. When flows transit heavily congested paths in the
network, then most of the alternate congestion-control algorithms adopt TCP congestion-
avoidance procedures, which negate any goodput advantage over TCP flows. Though
FAST and FAST-AT do not adopt TCP congestion-avoidance procedures, we found that
heavy congestion can cause oscillation in the transmission rate, which leads to higher loss
rates, more retransmissions and lower goodput.

We are unable to determine how likely a particular flow is to operate under the
bounded circumstances required for alternate congestion-control algorithms to provide
improved goodput over TCP. Certainly it would be possible to engineer a network, or
segments of a network, to provide specific users with high utility from alternate
congestion-control algorithms. On the other hand, we suspect a rather low probability for
such circumstances to arise generally in a network. Thus, we conclude that alternate
congestion-control algorithms can provide improved user goodput; however, most users
seem unlikely to benefit very often.

10.1.1.5 Safety. Given that on occasion some users could benefit from the increased
goodputs available from alternate congestion-control algorithms, we need to consider
whether widespread deployment of such algorithms could induce undesirable
macroscopic characteristics into the network. In other words, are there significant costs
that might offset the modest benefits associated with deploying alternate congestion-
control algorithms? We can answer this question only in part because we simulated
networks that used either a single congestion-control regime or a single alternate
congestion-control algorithm mixed with TCP congestion-control procedures. There
could be additional cautionary findings that arise from a heterogeneous mixture of
alternate congestion-control algorithms. We postpone such findings to future work.

 In our experiments, we simulated a wide range of conditions and we considered
numerous scenarios comparing network behavior under specific alternate congestion-
control algorithms, sometimes mixed with TCP procedures. For most algorithms under
most conditions, we found little significant change in macroscopic network
characteristics. One exception relates to FAST and FAST-AT. In spatiotemporal realms
with high congestion, where there were insufficient buffers to support the flows transiting

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 10-6

specific routers, FAST and FAST-AT entered an oscillatory behavior where the flow
cwnd increased and decreased rapidly with large amplitude. Under these conditions, the
network showed increased loss and retransmission rates, a higher number of flows
pending in the connecting state and a lower number of flows completed over time. Thus,
FAST and FAST-AT should be deployed on a wide scale only with great care. There
appears to be some possibility that FAST could cause significant degradation in network
performance in selected areas and for selected users. We recommend the need for
additional study of FAST and FAST-AT prior to widespread deployment and use on the
Internet.

10.1.2 Characteristics of Individual Congestion-Control Algorithms
Below, we provide a brief summary of the characteristics found from our experiments for
each alternate congestion-control algorithm. We discuss the algorithms in alphabetical
order.

10.1.2.1 BIC. Clearly, among the seven algorithms we studied, BIC is the most complex
to code and implement, requiring a potentially substantial amount of processing to adjust
the cwnd. BIC uses standard TCP congestion-avoidance procedures when cwnd is below
a low-window threshold (14 packets, here). Under congestion with losses spaced
sufficiently in time, BIC reduces cwnd less quickly than standard TCP; thus, BIC can
achieve higher goodputs under sporadic losses by maintaining a high transmission rate
and associated buffer state. This can be somewhat unfair to newly arriving flows. On the
other hand, when congestion becomes severe, with losses spaced closely in time, BIC
reduces cwnd much more quickly than TCP. Under such circumstances, BIC can take
substantial time (average 71.3 s in our experiments) to recover maximum goodput after
congestion eases. When considering the rate of increase in transmission speed under low
congestion after reaching initial slow-start threshold, BIC averaged about 18.8 s to reach
maximum transfer speed on long-lived flows. This rate of increase ranked fifth (of six)
overall, and was competitive with HTCP, Scalable TCP and HSTCP.

10.1.2.2 CTCP. The algorithm for CTCP requires periodic processing to adjust an
auxiliary delay window (dwnd), which increases the processing cost beyond that found in
standard TCP congestion control. Under congestion, CTCP reduces transmission rate by
one-half and then recovers relatively quickly. The advantage of CTCP recovery
procedures appears most obvious after a period of severe congestion on a path. Under
easing congestion, dwnd can increase quite quickly. Since CTCP augments the cwnd with
the dwnd, transmission rate can also increase quickly – returning to maximum rate in an
average 2.9 s in our experiments. In fact, in some situations, the rate of increase in dwnd
appears unbounded. CTCP implementations should probably require a bound on
maximum dwnd. Under periods of heavier congestion, increase in dwnd is constrained. In
addition, the CTCP algorithm appears quite fair to competing CTCP flows as well as
TCP flows. CTCP had the highest default low-window threshold (41 packets, here)
among the algorithms we studied. Further, CTCP averaged about 7.9 s to reach maximum
transfer speed on long-lived flows under low congestion and low initial slow-start
threshold. This rate of increase ranked second overall behind only FAST and FAST-AT,
which tied for first.

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 10-7

10.1.2.3 FAST. The algorithm for FAST requires periodic processing to adjust the target
cwnd. While each adjustment demands little computation, the default periodicity (20 ms,
here) can require multiple adjustments within a single round-trip. FAST does not have a
low-window threshold; thus, after initial slow-start, FAST flows never use standard TCP
congestion-avoidance procedures. Under congestion, FAST reduces transmission rate by
one-half and then recovers very quickly. The advantage of FAST recovery speed appears
under both sporadic losses and when congestion eases following a period of severe
congestion on a path. Under easing congestion, FAST recovered maximum transmission
rate in an average of 6.6 s in our experiments. On the other hand, for flows transiting
congested areas, with insufficient buffer space for all flows, FAST exhibits oscillatory
behavior that increases losses and, thus, retransmissions, which reduces user goodput.
Under severe conditions, FAST causes an increase in flows pending in the connecting
state because SYN packets are loss with increased probability. In addition, FAST can
significantly reduce the number of flows completed over time in a network. Among the
algorithms we studied, FAST achieves maximum available transmission rate in the
shortest time (3.7 s average) on long-lived flows under low congestion and low initial
slow-start threshold. The ability of FAST to accelerate transmission rate led to superior
goodputs (under low congestion and low initial slow-start threshold) for file sizes larger
than Web objects, and the advantage of FAST increased with file size. The ability of
FAST to quickly attain high transmission rates for large files tended to induce losses in
competing flows. Since TCP flows could not recover quickly, FAST flows could attain
much higher goodputs than competing TCP flows.

10.1.2.4 FAST-AT. The FAST-AT algorithm augments FAST with periodic procedures to
monitor throughput and tune the parameter used when adjusting the target cwnd.
Without tuning, FAST sets the parameter to a fixed value. FAST-AT monitors
throughput every round-trip time and tunes the parameter periodically (every 200 s,
here). As throughput improves past specified thresholds is increased and as throughput
declines past specified thresholds is decreased. FAST-AT exhibits many of the same
positive and negative properties as FAST. The main difference was that, under severe and
sustained congestion, FAST-AT reduced the parameter from a default setting of 200 to
as low as 8. In such, circumstances FAST-AT recovers much more slowly than FAST.
When throughput begins increasing, FAST-AT adjusts the parameter only every 200 s
and must make two adjustments (8 to 20 followed by 20 to 200) before reaching the
maximum recovery rate. In our experiments, when recovering from sustained periods of
heavy congestion, FAST-AT took longer (26 s average) to reach maximum transmission
rate than all alternate algorithms except BIC. On the other hand, by recovering
transmission rate more slowly under heavy congestion, FAST-AT proved more TCP
friendly than FAST. This occurred because under such circumstances FAST-AT did not
induce as many losses in competing TCP flows.

10.1.2.5 HSTCP. The HSTCP algorithm is a relatively straightforward; updating the
cwnd no more frequently than standard TCP. The HSTCP cwnd updates involve
somewhat costly logarithmic and exponentiation operations. HSTCP uses standard TCP
congestion-avoidance procedures when the cwnd is below a low-window threshold (31

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 10-8

packets, here). HSTCP reduces cwnd less on a loss than standard TCP and provides more
than linear increase in cwnd during congestion avoidance. Under both sporadic and heavy
congestion, HSTCP retains a higher transmission rate (and associated buffers) than TCP.
By maintaining more buffered packets, HSTCP can induce losses in competing flows. In
such situations, newly arriving HSTCP flows can have difficulty increasing transmission
rate, especially on paths with longer propagation delays. In addition, losses induced on
competing TCP flows hurt goodput for TCP users because TCP recovers only linearly.
When recovering from periods of sustained heavy congestion, HSTCP performed third
best (10 s average) in our experiments; however, the short recovery time can be attributed
mainly to the fact that, in comparable situations, HSTCP flows did not reduce
transmission rate as much as most other congestion-control algorithms. Under low
congestion and low initial slow-start threshold, HSTCP achieved maximum transmission
rate more slowly (22.4 s average) than all other alternate congestion-control algorithms
we studied.

10.1.2.6 HTCP. The HTCP algorithm requires a periodic (250 ms, here) process to
monitor flow throughput. HTCP uses standard TCP congestion-avoidance procedures for
a specified period (1 s, here) after a packet loss. Under congestion, HTCP behaves like
standard TCP congestion avoidance. The heavier the congestion, the more time HTCP
spends using TCP procedures. When recovering from periods of sustained heavy
congestion, HTCP performed fourth best (10 s average) in our experiments. Under
sporadic losses, HTCP can spend too much time using TCP’s linear increase. In our
experiments, this trait led HTCP to provide lower goodput than other alternate
congestion-control algorithms on large files. On the other hand, by adopting TCP
congestion-avoidance procedures following packet loss, HTCP is quite TCP friendly.
Under low congestion and low initial slow-start threshold, HTCP achieved maximum
transmission rate somewhat slowly (16.6 s average), comparable to BIC, HSTCP and
Scalable TCP, but significantly slower than CTCP, FAST and FAST-AT.

10.1.2.7 Scalable TCP. The Scalable TCP algorithm is a small modification of standard
TCP congestion-avoidance. Scalable TCP increases cwnd by a constant on each
acknowledgment and decreases cwnd by 12.5% on each loss. In addition, Scalable adopts
standard TCP congestion-avoidance procedures when cwnd is below a low-window
threshold (16 packets, here). Under congestion, established Scalable TCP flows do not
reduce transmission rate very quickly. By maintaining more buffered packets, Scalable
can induce losses in competing flows. In such situations, newly arriving Scalable flows
can have difficulty increasing transmission rate, especially on paths with longer
propagation delays. In addition, losses induced on competing TCP flows hurt goodput for
TCP users because TCP recovers only linearly. When recovering from periods of
sustained heavy congestion, Scalable performed fifth best (22.5 s average) in our
experiments; however, the recovery time can be attributed mainly to the fact that, in
comparable situations, Scalable flows did not reduce transmission rate as much as most
other congestion-control algorithms. Under low congestion and low initial slow-start
threshold, Scalable TCP achieved maximum transmission rate somewhat slowly (17.8 s
average). In fact, Scalable increased transmission rate very slowly for the first few

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 10-9

seconds of long-lived file transfers, which means that Scalable provides a steep increase
in transmission rate only for large files.

10.1.3 Recommendations
Under some circumstances, users can benefit from adopting alternate congestion-control
algorithms to transfer files on the Internet. For that reason, it makes sense to deploy such
algorithms into computers attached to the Internet. Of course, the probability appears
quite low that a specific user will see benefits on any particular file transfer. Among the
alternate congestion-control algorithms we studied, CTCP appears to provide the best
balance of properties. Under low congestion, CTCP can increase transfer rate relatively
quickly when operating in the congestion-avoidance phase. Further, CTCP reduces
transmission rate relatively quickly in the face of sustained congestion and recovers to the
maximum transmission rate quite quickly when congestion eases. CTCP appears
relatively friendly to flows using standard TCP congestion-control procedures. CTCP,
along with most of the other alternate congestion-control algorithms we studied, is
unlikely to induce large shifts in the macroscopic behavior of the Internet. FAST and
FAST-AT have some appealing properties, especially with respect to achieving
maximum transmission rate quickly on high-bandwidth, long-delay paths and recovering
quickly from sporadic losses. Unfortunately, when transiting highly congested paths with
insufficient buffers to support the flow volume, FAST and FAST-AT can enter an
oscillatory regime that could significantly increase loss and retransmission rates. Flows
transiting affected areas would take longer to connect and complete and would receive
lower goodputs.

10.1.4 Future Work
We studied seven proposed replacement congestion-control mechanisms for the Internet.
Despite the comprehensive nature of our study, more work remains to be done in at least
four directions. First, we limited our study to a bounded set of alternate congestion-
control algorithms for which we could find empirical data against which to validate our
simulations. Researchers have proposed many congestion-control algorithms that were
not included in our study; thus, one direction for future work is to consider the behavior
of additional algorithms. Of particular interest is CUBIC, which has replaced BIC as the
congestion-control algorithm enabled by default in Linux.

Second, we have not considered scenarios where multiple alternate congestion-
control algorithms are mixed together in the same network. Increasing the heterogeneity
of algorithms might reveal additional insights about the advantages and disadvantage of
the various algorithms, as well as uncover undesirable macroscopic behaviors resulting
from such mixtures. Where undesirable behaviors do not appear, then such a study would
increase confidence in the safety of deploying alternate congestion-control regimes. Of
course, conducting such a study would likely require substantial increase in demand for
computation resources in order to simulate enough network evolution to accumulate
sufficient samples to reveal statistically significant behavioral patterns.

Third, we have not validated our findings against live, controlled experiments
configured in GENI or a similar test bed environment. Conducting such a validation
would substantially increase confidence in the findings of our study. We intend to
undertake such a validation as soon as we can gain access to sufficient resources to

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 10-10

support our experiments. In the meantime, we also plan to consider how we might
attempt to validate our findings using test environments of smaller scale. One way to
approach this may be to make predictions about behaviors we should see replicated even
at smaller scale than the network sizes and speeds we simulated.

Fourth, our study revealed various strengths and weaknesses in the congestion-
control algorithms we investigated. Future researchers could exploit our findings to
propose algorithm improvements that compensate for identified weaknesses, while
retaining strengths. Further, our general findings may also help other researchers to
improve future designs for additional congestion-control algorithms.

10.2 Conclusions about Methods
SEE ON-LINE STUDY

