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a b s t r a c t

Reliable transport protocols have traditionally been designed to perform end-to-end
error control transparently to the intermediate nodes (e.g., TCP). However, the resource
constraints featured by Wireless Sensor Network (WSN) require a different paradigm
where intermediate nodes are able to cache packets, retransmitting them on-demand in
order to avoid incurring on costly end-to-end retransmissions. This paper presents an
analytical model of end-to-end delivery cost for WSN reliable transport with intermediate
caching. The model calculates the cost as the total number of physical layer transmissions
using a probabilistic formulation that has been validated through network simulation.
Although the model is based on a specific transport protocol (DTSN), the addressed
mechanisms are more generic, allowing it to be easily adapted to other WSN transport
protocols that also feature intermediate caching. Numerical results confirm the improved
efficiency introduced by a transport layer with intermediate caching in comparison with
end-to-end approaches that are based exclusively on MAC layer reliability. Different cache
partitioning policies were tested, and it is shown that cache partitioning policies should
take into account the network conditions experienced by concurrent flows, namely the
status of the radio links and the flow lengths.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Wireless Sensor Networks (WSNs) are infrastructureless networks that rely on large numbers of autonomous sensor
nodes to establish routing paths to the systems that must be fed with the sensorial data. One or more sink nodes typically
act as gateways to the external systems. The energy efficiency requirements of WSNs demand the use of low power radio
technologies, usually leading to multihop data transmission from the sensor nodes to the sink nodes and vice versa. Since
most WSN standards such as IEEE 802.15.4 [1] specify operation in unlicensed industrial, scientific, and medical (ISM)
bands, radio links become usually more error-prone than in other wireless networks (e.g., WLANs), which use higher
transmission power. The end-to-end error rate increases even more with the number of hops, usually requiring error
recovery mechanisms to keep it within acceptable bounds. The transport layer is usually responsible for end-to-end error
recovery, being widely accepted that transport protocols which rely purely on end-to-end retransmission (e.g., TCP) are
energy-inefficient. Transport protocols such as DTC [2] and DTSN [3,4] employ intermediate caching in order to decrease
the cost of end-to-end delivery. In these protocols, intermediate nodes are allowed to store and retransmit packets that are
missing at the destination.
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Distributed Transport for Sensor Networks (DTSN) is a simple protocol developed with the objective of providing a more
efficient transport-layer service in WSNs compared with TCP. It has the following main features: (1) reliable transmission
of block-oriented data, with selective repeat ARQ; (2) signaling traffic controlled by the sender (the sender explicitly
issues packet confirmation requests); (3) WSN nodes are able to cache packets at intermediate nodes so that end-to-end
retransmissions are minimized.

This paper presents an analytical model of WSN transport with intermediate caching, allowing the performance to be
predicted in terms of the number of physical transmissions required to guarantee the end-to-end delivery of data packets.
Although the details of the model are inspired by the DTSN protocol, its scope spans WSN transport with intermediate
caching in general. The conclusions that are drawn from the numerical results regarding the design of cache partitioning
policies will still hold in other similar protocols, for example DTC. As far as the authors know, this is the first time that a
comprehensive and integratedmodel is proposed to analyze the effects of caching on the performance of theWSN transport
layer, considering the impact of cache size, hop length, packet error rates (for both data and control packets) and concurrent
flows.

The rest of this paper is organized as follows. Section 2 presents the relevant relatedwork. Section 3 provides an overview
of the DTSN protocol. This is followed by Section 4, where the proposed analytical model is presented. Section 5 presents
some numerical and simulation results. Finally, Section 6 concludes the paper.

2. Related work

Since the list of reliable transport protocols proposed for WSNs is very extensive, this section shall only cover the ones
that are most directly related to the scope of the paper (i.e., protocols that employ intermediate caching to minimize end-
to-end retransmissions), as well as the main analytical models of WSN end-to-end delivery cost proposed in the literature.
The interested reader is referred to [5] for a more extensive survey on WSN transport protocols.

2.1. Reliable WSN transport protocols with intermediate caching

Reliable Multi-Segment Transport (RMST) [6] offers two simple services: data segmentation/reassembly and guaranteed
delivery using a NACK-based ARQ mechanism. RMST can operate end-to-end or in a store-and-forward mode where
intermediate nodes recover all the fragments of a block before relaying them forward. Since in this case the data blocks
are reconstructed at each hop, RMST requires significant memory resources to be available at individual nodes and is not
designed to cache packets in the intermediate nodes probabilistically.

Pump Slowly Fetch Quickly (PSFQ) [7] is a protocol primarily designed for downstream multicast dynamic code update,
though it can also be configured for unicast communication. Regarding intermediate caching, data is reconstructed at each
hop, just like in RMST (see above).While thismakes sense for dynamic codeupdate (i.e., eachnodemust get all the executable
code fragments), that can be very limiting for other applications (e.g., audio or image transmission) since it poses significant
requirements on node storage capabilities.

GARUDA [8,9] is focused on sink-to-sensor reliability like PSFQ. It uses a core architecture,where every third node is a core
node, serving as caching node and loss recovery server. Nodes use implicit multiple NACKs to recollect missing fragments,
where the NACK is the sequence number of the lastmessage ID the node has received thus far. Error recovery is performed in
two phases. During the first phase, a core node detecting missing packets requests them from its upstream core node. After
recovering all the missing packets, the second phase starts, in which the core node acts as recovery server for the non-core
nodes in its vicinity. To protect against lost full messages, Garuda uses a special Wait-for-First-Packet (WFP) pulse, which is
a small finite series of short duration pulses repeated periodically. Sensor nodes along the path to the intended recipients,
upon reception of the pulses also start pulsing and eventually all sensor nodes along the path are informed that a packet is
to be received. After pulsing for a finite duration, the sink transmits the first fragment. If a node receives the first fragment,
it stops pulsing theWFP and broadcasts the first fragment. Therefore, WFP serves as an implicit NACK for the first fragment,
while termination of WFP pulsing corresponds to an ACK. As first messages can store the size of the data that is going to be
transferred, reliable transfer of the first fragment can solve the lost last fragment problem. GARUDA supports out-of-order
packet delivery, which allows it to reduce the delivery delay.

Distributed TCP Caching (DTC) [2] enhances TCP in order to make it more efficient in WSNs. Its guaranteed delivery
service is similar to that of DTSN. DTC improves the transmission efficiency by compressing the headers and by using cache
at selected intermediate nodes. DTC is fully compatible with TCP, leaving the endpoints of communication unchanged—it
only requires changes in the logic of intermediate nodes. Although the paper only considers caching a single segment, this
significantly improves the efficiency of end-to-end delivery, minimizing the energy spent with retransmissions. The caching
mechanism may also be easily extended to use more than one segment per node. The authors also propose to use the TCP
SACK option in order to optimize the use of the cache. In this proposal, the SACK block is used to carry information about
segments in cache, allowing nodes farther from the destination to free their cache entries in case a node that is closer already
has the segment in cache. Some improvements have been proposed to the original DTC protocol. In [10], amultipath scheme
between sender and receiver allows the TCP session to be rerouted when intermediate nodes fail. In [11] the focus is rather
the MAC-transport cross-layer optimization, assuming a CSMA/CA MAC with ARQ. While DTC always tries to cache more
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recent segments, the new scheme allows to maintain an older segment already in cache with 50% probability. The paper
also proposes an alternative method to estimate the round-trip-time.

Wisden [12] is a sensor-to-sink wireless structural data acquisition system that incorporates data synchronization and
data compression algorithms besides reliable transport. The latter can be performed hop-by-hop, inwhich case intermediate
nodes keep lists of missing packets and cache recently forwarded packets. Missing packets are requested from the previous
node using a NACK mechanism. Since the amount of cache at each node is limited, there may not be enough space to store
all the packets in cache. Hence, an end-to-end recovery scheme is used to ensure that all packets are delivered. The sink
node keeps track of missing packets and requests them using the same NACK scheme used for hop-by-hop. It is assumed
that the sink node has no memory constraints, being able to store all out-of-order packets until the gaps are filled.

Rate-Controlled Reliable Transport (RCRT) [13], developed later by the same research lab, is another reliable sensor-to-
sink transport protocol, which includes congestion control and explicit rate adaptation functions. Although RCRT defines a
purely end-to-end NACK-based retransmission mechanism, [14] proposes an hop-by-hop variant, where each node along
the path keeps a packet cache and a list of missing packets per-flow.Whenever missing packets are detected, the respective
sequence numbers are included in a NACK packet, which is sent to the previous node. In case an intermediate node receives
a NACK and has any of the requested packets in cache, it retransmits them toward the sink and forwards the updated NACK
toward the source. Cached packets are deleted once they are confirmed by a positive ACK.

Reliable Transport with Memory Consideration (RTMC) [15] integrates hop-by-hop error recovery with flow control to
prevent cache overflow at intermediate nodes. A connection-oriented approach is followed since cache is explicitly reserved
per-flowupon reception of a special control packet in the beginning of the session, being also explicitly freed at the end of the
session. Each node processes data packets coming from both the previous hop and the next hop. Packets from the previous
hop are stored in cache and transmitted to the next hop as soon as possible. Packets relayed by the next hop are used as
implicit ACKs to free space in the local cache, as well as to know the amount of cache that is currently free at the next hop. A
nodewill only relay data packets when there is free room at the next hop. Packets are explicitly requested from the previous
hop when detected as missing or when the cache is empty. No end-to-end reliability scheme is considered.

Actor-Actor Reliable Transport Protocol (A2RT) [16] seeks to provide real time and reliable data delivery between
partitioned resource-rich actor nodes whose connectivity is bridged by resource-constrained sensor nodes. Caching of
packets at actor nodes improves the performance, compared with end-to-end reliability. Cross-layer interaction with
the routing protocol allows a transport wrapper entity to divide the end-to-end path into multiple segments between
partitioned actor nodes, minimizing the number of sensor nodes that are used to bridge two consecutive actor nodes. In
each segment, a reliable transport protocol is used to guarantee actor-to-actor delivery until the destination is reached.
An end-to-end wrapper session is maintained between the source and the final destination in order to assure end-to-end
delivery.

The Distributed Caching for Sensor Networks (DTSN) protocol is more directly related to the present paper and shall be
described separately in Section 3.

2.2. Analytical models of end-to-end reliability in WSNs

In [17], four algorithms are proposed,which improve the end-to-end delivery ratio of single packets based on hop-by-hop
retransmissions. The Hop-by-Hop Reliability (HHR) and Hop-by-Hop Reliability with Acknowledgments (HHRA) algorithms
use single paths,whereHHRalways sends thepacket a fixednumber times,whileHHRAbases its retransmissiondecisions on
the reception of acknowledgments. The other twoalgorithms,Hop-by-HopBroadcast (HHB) andHop-by-HopBroadcastwith
Acknowledgments (HHBA) are similarly related, but employ braided paths that are built by means of packet broadcasting at
each hop. An analytical model is provided, allowing the comparison between the proposed protocols. A multipath reliable
delivery mechanism designated Reliable Information Forwarding Using Multiple Paths (ReInForM) is proposed by the same
authors in [18], togetherwith an analyticalmodel. In both papers the reliabilitymodel is purely end-to-end and intermediate
caching is not considered.

In [2], the authors of DTC propose a simple analytical model in order to allow a rough comparison between DTC with
a fully-reliable hop-by-hop retransmission scheme. However, this analytical model does not allow the calculation of total
MAC overhead and assumes that the packet is always cached at the last node before a transmission failure takes place.
Concurrent flows are also not considered in the model.

In [16] simple calculations are included to show that dividing an end-to-end path into segments between caching nodes
is more efficient than performing pure end-to-end delivery. However, no model is presented for multi-flow scenarios or
even memory-constrained caching nodes.

Differently from the above models, the one presented in this paper addresses scenarios with concurrent flows and it is
also more generic, focusing on the caching mechanism. In fact it can be easily adapted to map the DTC functionality, namely
when the SACK option is used (see above).

3. DTSN overview

The basic DTSN specification [3,4] was thought for critical data transfer requiring end-to-end full reliability, in the
fashion of TCP. However, for sake of improving energy efficiency in WSNs, DTSN employs a Selective Repeat Automatic
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Repeat reQuest (SR-ARQ) using negative acknowledgments (NACK). Positive acknowledgment packets (ACK) are also used
to prevent the situations where the complete message or its last packet is lost (which cannot be detected solely based on
NACKs). Both NACKs and ACKs are to be sent by the receiver only upon request by the sender (Explicit Acknowledgment
Request-EAR), which can be piggy-backed in data packets.

In DTSN, a session is a source/destination relationship univocally identified by the tuple ⟨source address, destination
address, application identifier, session number⟩, designated the session identifier. Within a session, packets are sequentially
numbered. The Acknowledgment Window (AW) is defined as the number of packets that the source transmits before
generating an EAR. The output buffer at the sender works as a sliding window, which can span more than one AW. Its
size depends on the specific scenario, namely on the memory constraints of individual nodes.

In order to minimize end-to-end retransmissions, the intermediate nodes are able to cache a number of packets. Upon
interception of a NACK, in case they find any of the requested packets in cache, they retransmit those packets to the receiver.
After deleting the respective sequence numbers from the NACK, the intermediate node allows the modified NACK packet to
resume its walk toward the source.

4. Analytical model

Let G = (V , E) be a directed graph representing the network logical topology, with V = {1, . . . ,N} being its set of
vertices/nodes (with N = |V |), E its set of edges/links. Let P be the link reliability matrix of G, where each entry pλ

i,j is the
function that calculates the physical error probability of a packet λ in link (i, j) ∈ E, or 1 if (i, j) ∉ E. The variable λ represents
a packet (e.g., DATA, ACK, or NACK) and abstracts all intrinsic factors thatmay affect the packet error probability (e.g., coding,
bit rate, preamble, header and payload lengths, etc.), while the pλ

i,j take into account all extrinsic phenomena that might be a
cause of packet error (e.g., interference, attenuation, fading, collisions, etc.). A Binary Symmetric Channel (BSC) is assumed,
according to which all errors are considered independent. This is a relaxation of the model, since the error patterns in real
networks may be bursty.

Let Φ represent the set of flows,1 where each ϕi ∈ Φ, i = {1, . . . , F}, is a linear sub-graph of G with hop length li. The
proposed analytical model is focused on the overhead introduced by the end-to-end reliable transport protocol, leaving
aside other transport-related aspects such as congestion control, as well as accurate throughput and delay calculation. It is
assumed that the flow paths are previously set-up by a routing protocol operating transparently beneath the transport layer.
All intermediate nodes in these paths are potential caching nodes provided that their cache size is greater than 0. The route
decision logic and overhead associated with the routing protocol are out-of-scope of this model. The model was designed
to allow the computation of the following technology-independent metrics for a given transport flow ϕi:

• PoDi(t): Probability of end-to-end packet delivery after t transmission iterations. This metric is related to the packet
delivery delay and throughput.

• ci: Average end-to-end delivery cost, defined as the average number of physical layer transmissions required to deliver
the packet from the source to the destination considering no limit for the number of transport retransmission attempts.
This metric can be provided as input to a technology-dependent energy consumption model, allowing the computation
of an equivalent energy cost. The metric is also indirectly related to throughput and interference.

It was an objective of this model to be as generic as possible so that the results can be applied to other WSN transport
protocols. As such, the model captures only the following DTSN features2: (1) SR-ARQ based on NACK message feedback;
(2) caching at the intermediate nodes, with the cache at a given node being shared among concurrent flows that cross that
node; and (3) windowed transmission with feedback provided at the end of each AW.

Besides probabilistic caching protocols like DTSN andDTC, store-and-forward schemes like the one used in RMST can also
be captured by the proposedmodel when suitably parameterized. In this case, each flow should be considered as a sequence
of shorter sub-flows, with the end-to-end delivery cost being given by the sum of the delivery costs of the sub-flows.

The proposed model can be divided into two components: a link-layer component and a transport layer component. A
summary of the mathematical notations is provided in Table 1.

4.1. Link-layer component

Assuming a BSC and assuming that the MAC layer uses an ARQ scheme to improve link reliability, the effective packet
error probability of link (i, j) can be computed according to the following equation:

πλ
i,j = (pλ

i,j)
r+1 (1)

1 The terms transport session and transport flow shall henceforth be used interchangeably in this paper.
2 The Explicit Acknowledgment Request (EAR) and positive acknowledgment (ACK) packets were left out of the presented model for space reasons and

in order to make themodel more generic. In fact, a timeout at the receiver can be used instead of EAR notifications, while in steady-state operation the ACK
notification for a given AW can be replaced by the first NACK belonging to the ensuing AW, decreasing the overhead impact of the ACK as time progresses.
However, the authors have also developed a complete DTSNmodel that considers EAR andACK packets, which are implemented as options in the developed
software tool.
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Table 1
Summary of mathematical notations.

Notation Meaning

N Total number of nodes in the network.
F Total number of flows in the network.
Fn Total number of flows that cross node n.
λ Represents a packet (i.e., DATA, ACK, or NACK)
pλ
i,j Physical error probability associated with the transmission of packet λ over link (i, j).

πλ
i,j Effective error probability associated with the transmission of packet λ over link (i, j), taking into account the maximum number of MAC

retries.
ϕi( j) Node that is located j hops away from the source of flow ϕi . In accordance with this definition, ϕi(0) and ϕi(li) are the source and the

destination nodes, respectively.
li Hop length of the end-to-end path of flow ϕi .

ωn
i Cache partitioning weight assigned to flow ϕi at node n.

ρn
i Fraction of cache assigned to flow ϕi at node n.

χn
i Actual probability that a packet from flow ϕi is found in the cache of node n.

γ
S,λ
i,j Average cost of the successful transmission of packet λ over link (i, j).

γ
F ,λ
i,j Average cost of the failed transmission of packet λ over link (i, j).

PePi(t, h) Probability of effective progress of a packet from flow ϕi to ϕi(h) in iteration t ∈ [0 · · · + ∞[.
PoDi(t) Probability of delivery of a packet from flow ϕi to ϕi(li) in iteration t ∈ [0 · · · + ∞[. This is equivalent to PePi(t, li).
ci(t) Expected accumulated cost of transmission of a packet from flow ϕi up to iteration t .
ci Expected cost of end-to-end delivery of a packet from flow ϕi . This is equivalent to limt→∞ ci(t).

where r is the MAC retry limit. In other words, the link-layer transmission can only fail if all the physical transmission
attempts for the data packet fail. It should be noted that the transmission of the MAC layer acknowledgments (MACK) is
not relevant to calculate this probability, since even if no MACKs are received by the sender, the data packet may have been
correctly received during one of the attempts. Nevertheless, it must be taken into accountwhen calculating the transmission
cost.

The link-layer transmission of a packet incurs expected success and failure costs γ
S,λ
i,j and γ

F ,λ
i,j , which are defined as the

average number of physical layer transmissions (including MACK transmissions) made in case of a successful or a failed link
transmission, respectively. These costs are calculated as follows3:

C1 =

r
k=1

k
m=0


k − 1
m

 
1 − pDATAi,j


pMACK
i,j

m 
pDATAi,j

k−1−m 
1 − pDATAi,j

 
1 − pMACK

i,j


(m + k + 1)

C2 =

r
m=0

 r
m

 
1 − pDATAi,j


pMACK
i,j

m 
pDATAi,j

r−m 
1 − pDATAi,j


(m + r + 2)

C3 =

r
m=1

 r
m

 
1 − pDATAi,j


pMACK
i,j

m 
pDATAi,j

r−m
pDATAi,j (m + r + 1)

γ
S,DATA
i,j =

C1 + C2 + C3

1 − πDATA
i,j

(2)

γ
F ,DATA
i,j = r + 1. (3)

The numerator of γ S,DATA
i,j comprises the following terms:

1. The cost of link-layer success when less than r + 1 data transmission attempts are needed, i.e., the last attempt is
confirmed by a successful MACK, which ends the MAC ARQ procedure before the maximum number of attempts is
exceeded. As to the other attempts, either the data packet fails or the respective MACK fails.

2. The cost of link-layer success when r + 1 data transmission attempts are made, with the last one being successful (the
fate of the last MACK is not relevant). As to the other attempts, either the data packet fails or the respective MACK fails.

3. The cost of link-layer success when r + 1 data transmission attempts are made but the last one fails. As to the other
attempts, the data transmission is successful at least once, but the MACK transmissions always fail.

Regarding γ
F ,DATA
i,j , it suffices to say that link-layer transmission failure can only occur when all the r + 1 data packet

transmission attempts are unsuccessful, hence leading to the absence of MACK transmissions.

3 In the following formulation it is assumed that each DATA, NACK and MACK physical transmission has a cost equal to 1. However, the model can be
easily adapted to consider different costs (e.g., packet length, etc.).
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4.2. Transport-layer component

The objective of the transport-layer model is to calculate PoDi(t) and ci. As already explained, the role of the transport
protocol is to guarantee that each data packet generated at the source of a flow arrives sooner or later at the destination. In
case the packet is lost in transit at some point along the path ϕi, the destination detects this occurrence and sends a NACK
back to the source following the reverse path ϕ−1

i .
In case the NACK reaches the source, it retransmits the packet. However, since there is caching at intermediate nodes, if

the NACK is intercepted by an intermediate node which has the packet in cache, it immediately retransmits the requested
packet and deletes the respective sequence number from the NACK. The latter is then allowed to travel again toward the
source, carrying the remainder of the list of missing sequence numbers. If the NACK is lost in transit, sooner or later another
NACK packet is issued by the destination.

For each node n ∈ V , the total cache size Cn is divided among the different flows that cross the node. Let ωn
i ≥ 0 be a

weight related to the fraction of cache at node n that is assigned to flow ϕi and let Ω = {ωi
n}. The actual fraction is given by

the normalized weight ρn
i =

ωn
iFn

j=1 ωn
j
. It is assumed that the source and destination of a flow always keep all packets from

that flow in a separate memory, not interfering with the caching mechanism. AWi is the size of the transmission window of
the source of flow i.

A packet that belongs to flow i can only be cached in the fraction of cache assigned to flow i, whose size is equal to ρn
i ×Cn.

Consequently, the caching probability for a packet that belongs to flow i at node n is given by4:

χn
i = min


1, ρn

i ×
Cn

AWi


. (4)

After each retransmission request, assuming that the NACK is successful, the data packet is retransmitted from the node
that is closest to the destination and has the packet in its memory (in the worst case this is the source node). Each transport-
layer transmission attempt constitutes an iteration, and the position of the transmitting node (i.e., its hop distance from the
source) in iteration t + 1 constitutes the state of the system after iteration t , being designated the effective progress of the
packet up to iteration t . It should be noted that the latter means not only that the packet was successfully transmitted to
that node, but also that it is stored in its memory and none of the nodes closer to the destination (including the destination
itself) is currently storing it.

The set of possible system states is equal to the number of nodes along the path of the flow, including the source and the
destination. In each iteration, the transition probabilities only depend on the present state, on the packet error probability
matrix


= [πi,j]


and on the set of caching probabilities


X = {χn

i }

. From this follows that the progress of the packet

along the path of a flow ϕi can bemodeled as an absorbingMarkov chainwhose initial state is ϕ(0) and the final or absorbing
state is ϕi(li). In order to simplify the model, the following assumptions are made:

1. Once an intermediate node decides to cache or not a packet, that decision remains unchanged until the AW is completely
received by the destination.

2. For each flow, the transmission window spans only one AW.
3. For each flow the forward and reverse paths are stable and symmetric.

Assumption 1 above means that, from one iteration to the next, the system either maintains its state or goes to a state
where the packet is closer to the destination, which greatly simplifies the model. Assumption 2 further simplifies the model
putting aside the situation where NACK packets carry sequence numbers belonging to different AWs, which would cause
the NACK overhead to be divided by more than one AW. Assumption 3 means that the NACKs are forwarded through the
reverse path of the data packets, so that the system gets effective benefit of intermediate node caching.

For each iteration t there is a probability that the packet has progressed to node ϕi(h), 0 ≤ h ≤ li, the probability of
effective progress of the packet, PePi(t, h), which is calculated by solving for the effective probabilities resulting from all the
possible outcomes of a given iteration. PePi(t, h) is calculated according to Eq. (5). The reasoning behind the expression can
be explained by considering the most complex situation, i.e., t > 1, 0 < h < li. In this case, PePi(t, h) is the sum of the
probabilities associated with the following possible situations:

i. The current status of the system is j < h. In this case, PePi(t, h) is equal to the product of the following probabilities
(these probabilities are represented by the respective numbers in Fig. 1):
1. The packet is in node j at the end of the previous iteration: PePi(t − 1, j).
2. The NACK packet that resulted from iteration t − 1 was able to reach node j:

li−1
d=j


1 − πNACK

ϕi(d+1),ϕi(d)


.

3. The data packet was able to reach node h:
li−1

e=j


1 − πDATA

ϕi(e),ϕi(e+1)


.

4 This expression assumes an optimal use of the cache. The software tool developed by the authors can also consider the possibility that each packet is
subject to an independent Bernoulli trial.
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Fig. 1. Example of PePi(t, h) with t > 1, 0 < h < li .

4. The data packet was cached at node h: χh
i .

5. The data packet may have been successfully transmitted to some node k < li, but was not cached along the way:k−1
f=h


1 − πDATA

ϕi( f ),ϕi( f+1)

 
1 − χ

f+1
i


.

6. Then, the ensuing transmission from node k has failed: πDATA
ϕi(k),ϕi(k+1).

ii. The current status of the system is already h and the NACK packet was successfully received. The reasoning is similar to
the previous case, but the packet is assumed to be already cached at h.

iii. The current status of the system is already h but the NACK packet was lost along the way.

PePi(t, h) = (5)
t = 0, h = 0 1
t = 0, h ≠ 0 0

t = 1, h = li
li−1
j=0


1 − πDATA

ϕi( j),ϕi( j+1)


t = 1, h = 0

li−1
j=0


j−1
f=0


1 − πDATA

ϕi( f ),ϕi( f+1)

 
1 − χ

f+1
i


· πDATA

ϕi( j),ϕi( j+1)



t = 1, 0 < h < li
h−1
e=0


1 − πDATA

ϕi(e),ϕi(e+1)


· χh

i ·

li−1
j=h


j−1
f=h


1 − πDATA

ϕi( f ),ϕi( f+1)

 
1 − χ

f+1
i


· πDATA

ϕi( j),ϕi( j+1)

t > 1, h = li PePi(t − 1, li) +

li−1
j=0


PePi(t − 1, j) ·


li−1
d=j


1 − πNACK

ϕi(d+1),ϕi(d)


·


li−1
e=j


1 − πDATA

ϕi(e),ϕi(e+1)



t > 1, h = 0 PePi(t − 1, 0) ·

li−1
j=0


j−1
f=0


1 − πDATA

ϕi( f ),ϕi( f+1)

 
1 − χ

f+1
i


· πDATA

ϕi( j),ϕi( j+1)



t > 1, 0 < h < li
h−1
j=0


PePi(t − 1, j) ·


li−1
d=j


1 − πNACK

ϕi(d+1),ϕi(d)


·


li−1
e=j


1 − πDATA

ϕi(e),ϕi(e+1)


· χh

i ·

li−1
k=h


k−1
f=h


1 − πDATA

ϕi( f ),ϕi( f+1)

 
1 − χ

f+1
i


· πDATA

ϕi(k),ϕi(k+1)




+ PePi(t − 1, h) ·


li−1
d=j


1 − πNACK

ϕi(d+1),ϕi(d)



·

li−1
k=h


k−1
f=h


1 − πDATA

ϕi( f ),ϕi( f+1)

 
1 − χ

f+1
i


· πDATA

ϕi(k),ϕi(k+1)



+ PePi(t − 1, h) ·


1 −

li−1
d=j


1 − πNACK

ϕi(d+1),ϕi(d)


.

The PePi(t, h) function has the following properties:

1.

0 < πϕi( j),ϕi( j+1) < 1, ∀j ∈ [0, . . . , li − 1]


∧ (t2 > t1) ⇔ PePi(t2, h) > PePi(t1, h)

2.

πϕi( j),ϕi( j+1) < 1, ∀j ∈ [0, . . . , li − 1]


⇔ limt→+∞ PePi(t, li) = 1

3. ∃j ∈ [0, . . . , li − 1] : πϕi( j),ϕi( j+1) = 1 ⇔ PePi(t, li) = 0
4.
li

h=0 PePi(t, h) = 1, ∀t ≥ 0.

The cost of progress of a packet in each iteration can be calculated based on PePi(t, h). In order to simplify the cost
expression, the auxiliary functionCDPi(x, y) is defined, representing the expected cost of progress of a packet fromnodeϕi(x)
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to node ϕi( y) but not beyond ϕi( y). This assumes that the packet coming from ϕi(x) reaches ϕi( y) but is lost somewhere
between ϕi( y) and ϕi(li), not being cached anywhere between ϕi( y) and ϕi(li).

CDPi(x, y) =

li−1
k=y




k−1
f=y


1 − πDATA

ϕi( f ),ϕi( f+1)

 
1 − χ

f+1
i


· πDATA

ϕi(k),ϕi(k+1)·
k−1
f=x

γ S
ϕi( f ),ϕi( f+1) + γ F

ϕi(k),ϕi(k+1)


 . (6)

The cost calculated by CDPi(x, y) is equal to the sum of the costs of successful link transmissions from ϕi(x) to ϕi( y),
plus the cost of successful link transmissions beyond ϕi( y), plus the cost of a failed link transmission somewhere between
ϕi( y) and ϕi(li). Since this failed attempt can occur anywhere between ϕi( y) and ϕi(li), the cost of the possible situations is
weighted by the respective probability.

Furthermore, two auxiliary functions CNSi(h) and CNFi(h) are defined, which respectively represent the average cost of
successful and failed NACK delivery to node ϕi(h):

CNSi(h)

=

h
j=1


h−1
m=j


1 − πNACK

ϕi(m+1),ϕi(m)


· πNACK

ϕi( j),ϕi( j−1) ·


li−1
m=j

γ
S,NACK
ϕi(m+1),ϕi(m) + γ

F ,NACK
ϕi( j),ϕi( j−1)


+

h−1
j=0


1 − πNACK

ϕi(d+1),ϕi(d)


·

li−1
j=0

γ
S,NACK
ϕi( j+1),ϕi( j)

AWi

(7)

CNFi(h) =

li
j=h+1


li−1
m=j


1 − πNACK

ϕi(m+1),ϕi(m)


· πNACK

ϕi( j),ϕi( j−1) ·


li−1
m=j

γ
S,NACK
ϕi( j+1),ϕi( j)

+ γ
F ,NACK
ϕi( j),ϕi( j−1)


AWi

. (8)

The CNSi(h) function assumes that the NACKwas able to reach node ϕi(h), which then forwarded it in the direction of the
sender ϕi(0). Between node ϕi(h) and the sender, the NACK may have reached the sender or may have been lost in transit
at some node ϕi( j). CNS(i, h) provides the average NACK cost weighted by the probability associated with the possible
outcomes of the NACK packet. In any case, the cost counts the successful transmissions from the destination node ϕi(li) to
ϕi(h). Finally, the cost is divided by AWi, since each NACK is sent for each AWi. The CNFi(h) assumes that the NACK was lost
somewhere between ϕi(li) and ϕi(h), bearing some similarity with the first term of the numerator in Eq. (7). The cost of
NACK failure is also divided by AWi.

Based on the PePi(t, h), CDPi(x, y), CNSi(h) and CNFi(h), the function gi(t, h) is defined as shown in Eq. (9), representing
the average cost of progress to some node ϕi(h) in iteration t multiplied by PePi(t, h). Similar to the latter, the last case
(t > 0, 0 < h < li) will be explained in greater detail. This equation has three terms, which represent the following
situations:

i. The packet has previously progressed to node ϕi(h) and the NACK does not reach this node. The cost is only related to
the NACK transmissions at the MAC layer: CNF(i, h).

ii. The packet has previously progressed to nodeϕi(h)— it is already cached there— and the NACK is able to reach this node.
However, the retransmitted data packet does not reach the destination and the packet is not cached at nodes closer to
the destination. The considered costs are the following:
(a) Cost of the successful NACK: CNSi(h).
(b) Cost of the data packet while it is successfully transmitted by the MAC layer beyond ϕi(h), plus the cost of a failed

attempt between ϕi(h) and ϕi(li): CDP(h, h).
iii. The packet has previously progressed to node ϕi( j), 0 < j < h, and the NACK successfully reaches node ϕi( j). The latter

retransmits the data packet, which successfully reaches and is cached at node ϕi(h)—the conditional probability of this
occurrence is equal to

h−1
f=j (1 − πDATA

ϕi( f ),ϕi( f+1))


· χh
i . No nodes closer to the destination than ϕi(h) cache the packet

and the latter is lost before reaching the destination. The considered costs are the following:
(a) Cost of the successful NACK: CNSi( j).
(b) Cost of the data packet while it is successfully transmitted by the MAC layer up to node ϕi(h) and from then on, until

the failed attempt at some node between ϕi(h) and ϕi(li): CDP( j, h).

gi(t, h) = (9)
t = 0 0

t = 1, h = li


li−1
j=0


1 − πDATA

ϕi( j),ϕi( j+1)

 li−1
j=0

γ S
ϕi( j),ϕi( j+1)

t = 1, h = 0 CDP(0, 0)
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t = 1, 0 < h < li


h−1
j=0


1 − πDATA

ϕi( j),ϕi( j+1)


· χh

i · CDP(0, h)

t > 1, h = li
li−1
j=0


PePi(t − 1, j) ·


li−1
f=j


1 − πNACK

ϕi( f+1),ϕi( f )


·


li−1
f=j


1 − πDATA

ϕi( f ),ϕi( f+1)


·

CNSi( j) +

li−1
f=j

γ S
ϕi( f ),ϕi( f+1)




t > 1, h = 0 PePi(t − 1, 0) · CNFi(0)

+ PePi(t − 1, 0) ·


li−1
j=0


1 − πNACK

ϕi( j+1),ϕi( j)


· [CNSi(0) + CDP(0, 0)]

t > 1, 0 < h < li PePi(t − 1, h) · CNF(i, h)

+ PePi(t − 1, h) ·


li−1
f=h


1 − πNACK

ϕi( f+1),ϕi( f )


· [CNSi(h) + CDP(h, h)]

+

h−1
j=0

PePi(t − 1, j) ·


li−1
f=j


1 − πNACK

ϕi( f+1),ϕi( f )


·


h−1
f=j


1 − πDATA

ϕi( f ),ϕi( f+1)


· χh

i ·

[CNSi( j) + CDP( j, h)]

 .

Based on gi(t, h) and taking into account the 4th property of PePi(t, h), the average accumulated cost up to iteration t
can now be calculated:

ci(t) =

t
j=1

li
h=0

gi(t, h). (10)

All the equations required to calculate the target metrics are now available:

PoDi(t) = PePi(t, li) (11)

ci = lim
t→∞

ci(t). (12)

5. Numerical results

The presented analytical model was implemented in a software tool using the C programming language.5 The tool
assumes that network nodes are deployed in a grid topology. An input flow description file allows the user to set-up traffic
flows, specifying the AW size and the flow path between sender and destination, which may comprise several segments
featuring different pλ

i,j and explicitly assigned ωn
i values.

In all scenarios it was assumed that the DATA, NACK and MACK packets are subject to a packet error Bernoulli trial
based on configured pλ

i,j values. The latter are equal for all packet types, which is acceptable for the small DATA packet
sizes commonly observed in WSN scenarios. This uniformity also allows for consistency in all scenarios that we have
considered. However, since the simulation dynamicsmake the effective pλ

i,j dependent variables to a certain extent (e.g., due
to collisions), the effective pλ

i,j obtained in the simulations are provided in subsequent tables, together with the respective
simulation and analytical cost results where applicable. The adoptedπλ

i,j value range is based on themeasurements reported
in [19] for IEEE 802.15.4, which point to maxima of around 0.035 for indoor scenarios and 0.1 for outdoor scenarios in the
absence of IEEE 802.11b/g interference. With IEEE 802.11b/g interference, the worst-case πλ

i,j varies approximately between
0.20 (for 20-byte packets) and 0.80 (for 127-byte packets), even for very short communication distances (i.e., 5 m).

Validation of the analyticalmodelwas conductedwith network simulation using an implementation of theDTSNprotocol
for the ns-2 [20] platform. Only the single flow validation results are presented. Regardingmultiflow scenarios, the analytical
model assumes that the performance of each flow can be calculated independently, once the cache partitioning weights
are assigned. Experiments have shown that as far as the BSC characteristics of the communication channel are kept and
there is no congestion in the network, this also holds true for the simulations. The considered wireless medium was
802.11b with RTS/CTS disabled. For each measurement, simulation runs were executed until the average fell within the 95%
confidence interval. To determine the goodness-of-fit between the analytical and simulation results, we have calculated

5 The authors will gladly provide the source code of the developed tool upon request by interested readers.
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(a) Analytical. (b) Simulation.

Fig. 2. Single flow: cost ci as a function of cache size Cn for different πλ
i,j .

the transmission cost differences between points in the simulation and analytical curves, as well as the two-dimensional
correlation coefficient R using the following formula:

R =


m


n

(Amn − A)(Bmn − B)
m


n

(Amn − A)2


m


n

(Bmn − B)2
 (13)

where A =matrix of analytical values, B =matrix of simulation values, A = mean(A), B = mean(B) and−1 ≤ R ≤ 1. A value
close to 1 suggests that there is a positive relationship. A values close to −1 suggests that there is a negative relationship
(anti-correlation). A value close to or equal to 0 suggests that there is no relationship.

5.1. Single flow scenario

The model is first applied to a single flow scenario. Figs. 2 and 3 present both the analytical and simulation results as
a function of cache size and hop distance (in this case for configured πλ

i,j = 0.1). The R coefficient values are 0.9998 and
0.9978, respectively. As can be seen, the cost ci increases with the configured packet error probability (πλ

i,j) and with the hop
distance between sender and destination (li). On the other hand, it decreases as the cache size Cn increases. In Fig. 2, it also
becomes obvious that the impact of caching relative to a pure end-to-end solution increases with the configured πλ

i,j. The
results have also shown that making Cn > AW

2 does not result in significant performance increase. The explanation for this
behavior is that even if a single node is only able to cache one half of the AW, intermediate caching can achieve near optimal
performance. This result is very important with respect to cache assignment optimization in scenarios featuring concurrent
flows.

It is clear that there is an almost perfectmatch between the analytical and simulation results, with the difference between
curve points never exceeding 10% of the simulated cost. It should be noted that the confidence intervals become larger
precisely for high πλ

i,j and low cache size. This higher unpredictability of the cost in this region of the parameter space has
a parallel in the analytical model, since the ci becomes highly nonlinear. In other words, every small deviation from the
average πλ

i,j in some of the links, may have a significant impact on cost. In Tables 2 and 3, the effective πλ
i,j average values

are presented together with the respective simulation and analytical costs.

5.2. Single-flow transport-based vs. MAC-based end-to-end reliability

Having a huge link-layer retry limit assures a high-level of hop-by-hop reliability and minimizes the number of end-to-
end retransmissions, albeit significantly slowing down the detection of topology changes. SinceWSNs are usually considered
to be fairly static, this should not represent a very significant drawback and would in principle avoid the need for caching.
As such, the second set of results allows the comparison between the two solutions regarding the cost required to achieve
a given value of PoDi(t).

Fig. 4 depicts the cost ci as a function of the packet delivery probability PoDi(t) with pλ
i,j ≈ 0.56 (which makes πλ

i,j = 0.1
when r = 3) and li = 9. The different values of PoDi(t)were achieved by varying t . As expected, ci decreases as Cn increases,
for fixed values of r and PoDi(t). On the other hand, when the caching mechanism is switched off (Cn = 0) and the PoDi(t)
is fixed, ci decreases as r increases until r = 6. For r = 7, ci starts to increase again for the same values of PoDi(t). This
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(a) Analytical. (b) Simulation.

Fig. 3. Single flow: cost ci as a function of the end-to-end hop length li for different cache size Cn and πλ
i,j = 0.10.

Table 2
Effective physical packet error rates for the scenarios in Fig. 2.

Configured pi,j Cn pDATAi,j pNACKi,j pMACK
i,j Simulation cost Analytical cost Difference (%)

0 0 0.000413985 0 0.000689849 18.0162 18.016156 0.00
5 0.000413985 0 0.000689849 18.0162 18.016156 0.00

10 0.000413985 0 0.000689849 18.0162 18.016156 0.00
15 0.000413985 0 0.000689849 18.0162 18.016156 0.00
20 0.000413985 0 0.000689849 18.0162 18.016156 0.00

0.3162 0 0.361943 0.290088 0.320186 34.22 33.542453 1.98
5 0.361153 0.299205 0.319741 32.9331 32.186056 2.27

10 0.360496 0.295042 0.321483 32.6519 31.682894 2.97
15 0.3608 0.296275 0.320619 32.4919 31.400986 3.36
20 0.360329 0.297958 0.321408 32.3775 31.263856 3.44

0.4162 0 0.472033 0.44866 0.416773 48.0725 46.007457 4.30
5 0.468245 0.448932 0.414577 41.7606 40.184874 3.77

10 0.46743 0.447753 0.415811 40.0056 38.292551 4.28
15 0.466957 0.438087 0.414722 39.6494 37.337167 5.83
20 0.467751 0.45057 0.416176 39.065 36.907109 5.52

0.4729 0 0.535493 0.506732 0.475102 64.2288 60.272568 6.16
5 0.529396 0.510097 0.47354 49.98 47.183824 5.59

10 0.525864 0.512887 0.474061 46.0712 43.368873 5.87
15 0.52516 0.507655 0.475398 45.3294 41.734722 7.93
20 0.525391 0.522376 0.472598 44.3956 40.776711 8.15

0.5623 0 0.626122 0.594481 0.565052 119.339 111.470291 6.59
5 0.615283 0.600047 0.558556 68.5318 64.025591 6.58

10 0.611471 0.596603 0.567429 58.7076 54.937569 6.42
15 0.610517 0.593505 0.556674 54.5338 50.776135 6.89
20 0.60858 0.592506 0.557424 52.1275 48.952637 6.09

0.6687 0 0.720526 0.692955 0.670632 444.878 428.935071 3.58
5 0.709892 0.691581 0.669602 120.578 111.645297 7.41

10 0.699485 0.681215 0.664193 87.9786 84.116048 4.39
15 0.703867 0.682586 0.666652 77.9115 72.646702 6.76
20 0.710014 0.685137 0.669862 73.2265 66.802011 8.77

apparently odd result is simple to explain. The MAC layer attempts to transmit the packet until the retry limit is reached or
a MACK frame is received. However, not to receive the MACK does not always mean that the data packet was lost. In fact,
it may be the case that it was the MACK frame that could not be received correctly due to physical errors, in which case
the ensuing retries constitute useless overhead. The more the retry limit is oversized relative to the experienced pλ

i,j, the
more frequently such events will occur. In most cases, it is better to follow a more optimistic policy by reducing the MAC
retry limit while trusting the caching mechanism to minimize end-to-end retransmissions in case of packet loss. This is in
accordance with the obtained results: the minimum cost that can be achieved without cache (r = 6) is approximately the
same as the cost achieved when Cn = 5, r = 3.

It is also interesting to study how fast each configuration converges to PoDi(t) = 1. Fig. 5 depicts PoDi(t) as a function
of the number of iterations t . The configurations with higher r converge faster even without caching. It can also be clearly
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Table 3
Effective physical packet error rates for the scenarios in Fig. 3.

Hops Cn pDATAi,j pNACKi,j pMACK
i,j Simulation cost Analytical cost Difference (%)

1 0 0.560228 0.503004 0.54476 5.06 4.737944 6.36
1 0.560228 0.503004 0.54476 5.06 4.737944 6.36
5 0.560228 0.503004 0.54476 5.06 4.737944 6.36

10 0.560228 0.503004 0.54476 5.06 4.737944 6.36
20 0.560228 0.503004 0.54476 5.06 4.737944 6.36

2 0 0.587001 0.530348 0.559678 11.49 10.528386 8.37
1 0.587225 0.528042 0.561035 11.401 10.502728 7.88
5 0.585353 0.524394 0.563234 11.199 10.344848 7.63

10 0.583323 0.510598 0.555869 10.898 10.101717 7.31
20 0.58291 0.519643 0.567508 10.587 9.868532 6.79

3 0 0.576015 0.584001 0.561958 17.7613 16.696974 5.99
1 0.57517 0.575266 0.557509 17.6053 16.465815 6.47
5 0.572214 0.566208 0.554542 16.8186 15.831762 5.87

10 0.581481 0.577648 0.569827 16.965 15.671234 7.63
20 0.583757 0.552406 0.571605 16.349 14.952874 8.54

4 0 0.598519 0.595996 0.559764 27.847 25.34869 8.97
1 0.595298 0.605155 0.565576 26.3981 24.696633 6.45
5 0.590254 0.587744 0.567309 24.6516 22.830541 7.39

10 0.599202 0.572932 0.572101 24.024 21.923747 8.74
20 0.597955 0.573187 0.575619 22.354 20.434258 8.59

5 0 0.614867 0.575882 0.556697 39.5568 36.563451 7.57
1 0.613694 0.57919 0.563584 38.8682 35.044036 9.84
5 0.606675 0.579186 0.555108 32.0017 30.427542 4.92

10 0.613804 0.597695 0.562512 31.273 28.523371 8.79
20 0.610245 0.57405 0.562489 28.63 25.91089 9.50

6 0 0.618395 0.59078 0.570508 54.2359 49.940114 7.92
1 0.610711 0.590884 0.566931 49.5552 45.136266 8.92
5 0.603719 0.605676 0.56695 41.2581 37.874987 8.20

10 0.603613 0.594272 0.571433 36.6813 34.319706 6.44
20 0.601388 0.5967 0.573114 33.977 31.246063 8.04

7 0 0.610472 0.595532 0.550919 65.814 61.616875 6.38
1 0.608294 0.594777 0.569733 61.2655 56.340762 8.04
5 0.611851 0.600354 0.563008 50.939 46.411416 8.89

10 0.607227 0.595212 0.558088 44.8602 40.599909 9.50
20 0.603453 0.580932 0.558351 39.9645 36.480847 8.72

8 0 0.621174 0.600203 0.566616 92.9968 84.903209 8.70
1 0.612641 0.583665 0.560534 74.4109 70.02037 5.90
5 0.612484 0.585701 0.561229 56.687 54.385681 4.06

10 0.610852 0.59605 0.564148 51.955 47.605964 8.37
20 0.611266 0.592888 0.561427 46.1578 42.662995 7.57

9 0 0.626122 0.594481 0.565052 119.339 111.470291 6.59
1 0.616901 0.593898 0.564312 91.5931 87.18388 4.81
5 0.615283 0.600047 0.558556 68.5318 64.025591 6.58

10 0.611471 0.596603 0.567429 58.7076 54.937569 6.42
20 0.60858 0.592506 0.557424 52.1275 48.952637 6.09

Fig. 4. Cost ci as a function probability of delivery PoDi(t).
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Fig. 5. Probability of delivery PoDi(t) as a function of t with pλ
i,j ≈ 0.56 and li = 9.

(a) Analytical. (b) Simulation.

Fig. 6. Single flow: cost ci as a function of retry limit r with configured pλ
i,j ≈ 0.56 and li = 9.

seen that there is a significant increase in convergence speed between r = 3 and r = 4 and then between r = 4 and r = 6.
Regarding the configurations with caching, the convergence speed increases with Cn.

Fig. 6 depicts ci as function of r for different Cn values and now includes both analytical and simulation results. The R
coefficient is 0.9982. Since the cost values with Cn = 0 or Cn = 1 are much higher compared to the other values, we just
show the plots starting from r = 3 and r = 2, respectively. The costs for r = 1 and r = 2 turned out to be less accurate
than for r > 2, since these points belong to the already mentioned nonlinear region. The increased unpredictability in this
region is also attested by the size of the confidence intervals in the simulation results. However, the curves still accompany
each other, with the cost difference exceeding 30% only for r = 1 with Cn = 0 and Cn = 5, and never exceeding 15% for
r = 2. The difference stays always below 10% for all other r values. In Table 4, the effective πλ

i,j average values are presented
together with the respective simulation and analytical costs.

Confirming the previous discussion, all the curves present a global minimum, whose value decreases with Cn. The results
are similar for higher pλ

i,j values, though the argmin values become increasingly more spread in the horizontal axis.
In summary, the results presented in this section demonstrate that arbitrarily increasing the MAC retry limit may lead

to higher costs in terms of energy, throughput and interference, even if it can potentially speed-up end-to-end delivery.
It also does not eliminate the benefits of intermediate caching at the transport layer. Instead, these solutions should be
integrated and the number of MAC retry limit should be dynamically adapted based on measured link conditions. The need
for optimization of the MAC retry limit and its impact on transport already constitutes an open research topic (e.g., [21]).

5.3. Concurrent flows with uniform link quality and length

In all multiflow scenarios it is assumed that the πλ
i,j for DATA, NACK and MACK packets are the same, in order to allow

a consistent comparison with the results for single flow scenarios. The fact that the amount of cache assigned to a flow
has a significant impact on the cost of delivery raises the issue of how to partition the cache when the node is crossed by
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Table 4
Effective physical packet error rates for the scenarios in Fig. 6.

r Cn pDATAi,j pNACKi,j pMACK
i,j Simulation cost Analytical cost Difference (%)

1 0 0.645025 0.583938 0.562544 2088.79 2727.97782 −30.60
5 0.609968 0.583705 0.562692 227.6 136.503971 40.02

10 0.604045 0.580073 0.542225 107.525 85.598434 20.39
15 0.606249 0.578666 0.559406 87.55 69.696689 20.39
20 0.597496 0.572447 0.545347 61.7 58.10221 5.83

2 0 0.628559 0.592796 0.564844 243.926 237.441118 2.66
5 0.59496 0.584583 0.551577 77.2667 69.352053 10.24

10 0.603769 0.589414 0.561393 63.3409 57.169115 9.74
15 0.600773 0.566213 0.553275 55.04 49.60971 9.87
20 0.600261 0.583903 0.547298 52.6429 46.732815 11.23

3 0 0.626122 0.594481 0.565052 119.339 111.470291 6.59
5 0.615283 0.600047 0.558556 68.5318 64.025591 6.58

10 0.611471 0.596603 0.567429 58.7076 54.937569 6.42
15 0.610174 0.593684 0.553223 54.5338 50.776135 6.89
20 0.60858 0.592506 0.557424 52.1275 48.952637 6.09

4 0 0.607554 0.580622 0.565334 78.3979 74.205735 5.35
5 0.601694 0.595453 0.564772 59.3635 56.16042 5.40

10 0.582198 0.603257 0.559973 52.2667 51.811635 0.87
15 0.5992 0.585247 0.558741 53.506 51.044408 4.60
20 0.595679 0.578679 0.553352 51.2893 49.480693 3.53

5 0 0.596486 0.579336 0.567318 65.9693 64.272349 2.57
5 0.590828 0.611826 0.559365 56.5828 55.241823 2.37

10 0.577452 0.599243 0.547004 52.41 52.457283 −0.09
15 0.572322 0.631193 0.550461 51.05 51.330259 −0.55
20 0.581369 0.598653 0.549189 52.1437 51.242258 1.73

6 0 0.593434 0.583668 0.565107 64.4226 59.038472 8.36
5 0.586599 0.572037 0.553642 57.4741 54.191508 5.71

10 0.585062 0.563618 0.556064 56.7621 55.347149 2.49
15 0.581583 0.551044 0.551226 55.7194 54.218353 2.69
20 0.579498 0.512286 0.52595 53.5833 52.238965 2.51

7 0 0.583233 0.499566 0.526946 58.05 57.60894 0.76
5 0.588764 0.532741 0.525389 57.17 56.163115 1.76

10 0.576819 0.583667 0.519683 56.16 54.255603 3.39
15 0.586625 0.571238 0.532333 57.1375 55.335621 3.15
20 0.58668 0.53776 0.539607 57.43 55.609651 3.17

8 0 0.589325 0.362612 0.549178 60.85 57.926418 4.80
5 0.590449 0.403133 0.552173 60.9086 57.208549 6.07

10 0.583112 0.254292 0.53288 57.85 57.154557 1.20
15 0.582534 0.151216 0.530706 56.6313 56.671036 −0.07
20 0.582534 0.151216 0.530706 56.6313 56.546956 0.15

more than one flow. Fig. 3 suggests that when each node in the network is simultaneously crossed by two flows, to divide
the cache equally between the flows (equal to ωn

i ) already results in near-optimal performance. In more complex scenarios
with a higher number of concurrent flows, the optimality of this uniform ωn

i is not obvious, namely when the flows have
different lengths or experience different link conditions.

The first scenario consists of a 10 × 10 grid with crossing 9-hop flows similar to the one depicted in Fig. 7. Since each
flow shares its path with a reverse flow, each intermediate node is crossed by four flows. Five cache partitioning policies
were tested:

1. Uniform: ωn
i = 1 for all flows at all nodes.

2. Increasing: For each flow, ωn
i = 1 at the destination, and this is divided by two in every other hop as the distance from

the destination increases.
3. Decreasing: For each flow, ωn

i = 1 at the source, and this is divided by two in every other hop as the distance from the
source increases.

4. U-shape: For each flow, ωn
i = 1 at one node located in the center of the path, and this is divided by two in every other

hop as the distance from the center node increases.
5. Inv-U-shape: For each flow,ωn

i = 1 at the source and this is divided by two in every other hop away from it until a center
node is reached, then it is multiplied by two at each hop as the distance from the destination decreases.

It should be recalled that theωn
i is just a weight and not the actual fraction of cache assigned to flow ϕ(i) at node n, which

is ρn
i =

ωn
iFn

j=0 ωn
j
.
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Fig. 7. Concurrent flows in a grid topology.

Fig. 8. Square grid with constant πλ
i,j: the cost ci as a function of πλ

i,j with Cn = 20 for different cache partitioning policies with li = 9.

The cost ci is depicted in Fig. 8 as a function of πλ
i,j with Cn = 20 and li = 9 for different cache partitioning policies. As can

be seen, the Uniform and Inv-U-Shape are the most efficient policies, presenting almost identical results. However, Uniform
policy is the fairest, with null standard deviation.

5.4. Concurrent flows with non-uniform link quality and length

The previous results have assumed that the link quality is uniform across the network. In case some flow experiences
worse conditions (e.g., greater hop length and/or bad links), it is obvious that it should be assigned a larger slice of the
cache. Besides, even for a flow that experiences bad end-to-end conditions, its path may comprise links that are in worse
conditions than others. In this case, it is desirable to cache the packet once it is successfully transmitted beyond a bad link.
A non-Uniform caching policy is defined, which takes into account both the link error rates and the length of the flow,
assigning ωn

i values as follows:

ω
ϕi(k)
i =


πDATA

ϕi(k),ϕi(k+1) · πNACK
ϕi(k),ϕi(k+1)

a
(li)b (14)

where a ≥ 0 and b ≥ 0. From the analysis of the equation, it comes out that in a scenario where all the links have equal error
rates and all flows have the same length, this policy converges to the Uniform policy. It is also equivalent to the Uniform
policy when a = b = 0. Otherwise, it assigns greater weight to the flows that are longer and links that present higher πλ

i,j.
Fig. 9 depicts the cost ci in the same grid topology, but where the vertical links present πλ

i,j = 0.2 and the horizontal πλ
i,j

varies. The other conditions are kept the same, namely Cn = 20 and li = 9. Again, it is assumed that the πλ
i,j for DATA, NACK

and MACK packets are the same. The Uniform cache policy is compared with the non-Uniform cache policy, where a = 2
and b = 2 (in this experiment, parameter b has no impact since the flow lengths are the same). The non-Uniform policy can
achieve improved fairness for horizontalπλ

i,j valueswithin [0, 0.1], lowering themaximum ci and also the standard deviation.
The obvious trade-of is an increase of the minimum ci. The average ci is also slightly lower than Uniform until the horizontal
and vertical πλ

i,j becomes close enough (πλ
i,j = 0.1) that it rises beyond Uniform due to the disproportionate ωn

i values. This
is also the point where horizontal flow performance starts to be worse than vertical flow performance (although this cannot
be seen in the graphic, the maximum and minimum values belong to horizontal and vertical flows respectively), which
is not desirable. As an attempt to mitigate the problem, lower values for the non-Uniform index a were tested. However,
as a decreased, the fairness improvement relative to the Uniform policy also decreased. The conclusion is that the cache
assignment that results from Eq. (14) is not optimal. The use of more advanced optimization techniques such as convex
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Fig. 9. Square gridwith differentπλ
i,j: the cost ci as a function of the horizontalπλ

i,j with verticalπλ
i,j = 0.2, Cn = 20, li = 9, for theUniformand non-Uniform

cache policies.

Fig. 10. Square grid with higher πλ
i,j = 0.2 in one half of the vertical flows: the cost ci as a function of the πλ

i,j in the remaining links, with Cn = 20, for the
Uniform and two non-Uniform cache policies.

optimization and game theory appear to be promising solutions to findmore optimal policies. Furthermore, algorithms that
adapt to dynamic network conditions need to be explored.

Additional tests have also shown that the impact of the cache partitioning parameters increases with the vertical πλ
i,j,

which is not a surprising result. On the other hand, for verticalπλ
i,j = 0.1, the curves present similar shapes, but the difference

between policies is not as noticeable (the decrease in the maximum ci is still below 10%).
A variant of this scenario was prepared in which the first 5-hop segments of the vertical flows endure πλ

i,j = 0.2, while
the remaining links in the network endure πλ

i,j ∈ [0.01, 0.15]. Fig. 10 depicts ci as a function of the lower πλ
i,j values. Once

again, it can be seen that the non-Uniform policy results in an improvement of the maximum (and average) ci until the
low πλ

i,j reaches approximately 0.1. It is at this point that the horizontal flows start to present worse performance than the
vertical flows, although the latter present a greater average πλ

i,j. The manipulation of the a parameter as well as of the πλ
i,j

range provided results that are similar to the previous scenario.
The length of the flow is another variable with significant impact on the ci. For the same link quality, concurrent flows

with greater hop-length havemore difficulty in completing end-to-end delivery and thus should receive a larger cache slice.
The next scenario is based on the former, but at this time the grid is rectangular, with 16 5-hop horizontal flows (8 rows,
each with two flows in opposing directions) cross eight 9-hop vertical flows (4 columns, each with two flows in opposing
directions). Like in the previous scenario, the vertical links presentπλ

i,j = 0.2 and the horizontalπλ
i,j varies. The non-Uniform

policy is parameterized with a = 2 and b = 2. The results are depicted in Fig. 11. The difference in terms of maximum ci
is around 16.9%. The average ci for non-Uniform is slightly lower until πλ

i,j is approximately 0.15 for the horizontal flows.
When the horizontal and verticalπλ

i,j values are equal at 0.2, the non-Uniform policy still presents a lowermaximum ci, since
it favors the longer flows. Although not shown in the graphic, the standard deviation is always significantly lower for the
non-Uniform policy, attesting its greater fairness.
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Fig. 11. Rectangular gridwith differentπλ
i,j: the cost ci as a function of the horizontalπλ

i,j with verticalπλ
i,j = 0.2, Cn = 20, for the Uniform and non-Uniform

cache policies.

Fig. 12. Convergecast pattern on a grid: the cost ci as a function of πλ
i,j with Cn = 20 for the Uniform and length-dependent cache policies.

5.5. Convergecast scenario

The next scenario consists of a convergecast flow pattern (typical inmainstreamWSNs) in a 10×10 grid network, where
the node in the top left corner is the sink node and all the other 99 nodes are data sources. The flow paths were selected
based on a shortest-path algorithm and theπλ

i,j values are constant across the grid. Again, it is assumed that theπλ
i,j for DATA,

NACK and MACK packets are the same. The Uniform policy is compared with the same non-Uniform policy, parameterized
with a = 2 and b = 3.

Fig. 12 depicts the cost ci as a function of πλ
i,j with Cn = 20 for the Uniform and length-dependent cache policies. While

the average and minimum ci are practically the same for both policies, the length-dependent policy reduces the maximum
ci by approximately 15% for πλ

i,j = 0.1 and 19% for πλ
i,j = 0.2. Accordingly, the standard deviation is reduced from 34.05 to

31.59 with πλ
i,j = 0.1 and from 87.85 to 78.85 for πλ

i,j = 0.2. These reductions tend to increase with πλ
i,j.

6. Conclusion and future work

This paper has presented an analytical model of WSN reliable transport with intermediate caching using a probabilistic
formulation which has been validated through simulations. The model allows the performance evaluation of end-to-end
delivery in terms of the required number of physical layer transmissions required to achieve a given probability of end-to-
end delivery. The presented cost function can be fed to a technology-dependent energy model, allowing the prediction of
the related energy cost. Although the analytical model is mainly inspired by themechanisms of the DTSN transport protocol,
it was designed to be more generic, allowing the manipulation of intermediate caching parameters that apply to otherWSN
transport protocols.

The WSN low-power radio links present high packet loss ratios, especially when enduring interference from other
radio technologies (e.g., interference of IEEE 802.11 on IEEE 802.15.4 WSNs). The presented results show the advantages
of integrating the transport-layer intermediate caching mechanism in such environments, even if ARQ-based link-layer
error recovery is present. In the latter case, a dynamic adjustment of the MAC retry-limit should also be used to improve
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the efficiency of end-to-end delivery. Further results demonstrate the need to optimize cache partitioning in scenarios with
concurrent flows, taking into account the error rate of the links, as well as the length of the flows.

The authors are currently exploiting the presented results in order to develop distributed cache optimization algorithms
that adapt to dynamic network conditions. Transport-routing cross-layer caching optimization constitutes another
promising topic for future research.
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