
Robust Audio Tool (RAT) Supporting Separate
Recording and Playback Audio Devices Selection

Cesnet Technical Report No. 10/2009

Tomáš Rebok1,2, Martin Beneš1, and Milan Kabát1

1Faculty of Informatics, Masaryk University, Botanická 68a, Brno
2CESNET z.s.p.o., Zikova 4, Prague

December 11, 2009

Abstract

This technical report describes the modifications of the Robust Audio Tool
(RAT) application, that allow its users to select separate recording and play-
back audio devices. These modifications have been driven especially by the re-
quirement to support professional sound cards providing separate half-duplex
recording and playback audio devices only, which the original RAT is not able
to make use of.

Keywords: RAT-HD, RAT, half-duplex devices, separate audio devices,
separate recording and playback audio devices.

1 Introduction

The Robust Audio Tool (RAT)[5] is an open-source cross-platform audio conferenc-
ing and streaming application allowing its users to participate in audio conferences
over the Internet. It has been originally implemented by Colin Perkins at University
College London1 (UCL) as a part of UCL’s toolset supporting remote collaboration2

and later became maintained mainly by the UCL’s SUMOVER project3. Currently,
it has become maintained by UCL’s AVATS project4, which claims to propose sup-
port for its enhanced stability and longevity.

As claimed by Colin Perkins [7], the RAT is one of the earliest voice-over-IP ap-
plications, which has pioneered the use of forward error correction in VoIP systems,

1http://www.ucl.ac.uk/
2Among the other tools belong the VIdeoconferencing Tool (VIC)[4] and the shared White-

BoarD tool (WBD)[1].
3http://mediatools.cs.ucl.ac.uk/nets/mmedia/
4http://www.cs.ucl.ac.uk/research/avats/

http://www.ucl.ac.uk/
http://mediatools.cs.ucl.ac.uk/nets/mmedia/
http://www.cs.ucl.ac.uk/research/avats/


and furthered development of receiver-based loss concealment algorithms, adaptive
playout scheduling, and RTCP-based diagnostics for multicast conferencing. Besides
that, it further features a range of different rate and quality codecs, the receiver
based loss concealment to mask packet losses, and a sender-based channel coding in
the form of redundant audio transmission.

For point-to-point communication, the RAT does not require any special features
except for a network connection capable of unicast-based communication and a
soundcard. For multi-party conferences the RAT uses the IP multicast and therefore
all participants must reside on a multicast capable network. However, to avoid the
dependency on the presence of multicast service, which is not universally available
and reasonably reliable in many networks yet, software-based tools simulating the
multicast functionality in unicast networks can be used—for example, the UDP
packet reflector [8], the Active Element [3], the Distributed Active Element [2], etc.

Regarding the RAT’s audio subsystem, it supports many various audiosystems
including Alsa, OSS, NetBSD audio, MacOS X audio, Win32 audio, etc., which make
it a highly platform-independent solution for remote collaboration. Internally, the
RAT assumes a single full-duplex audio device, which is used both for voice recording
and playback simultaneously (see the Figure 1). Even though this is fully sufficient
in common situations, it becomes a limitation in cases when one wants to use it
with professional sound cards providing half-duplex devices only. For example, the
LynxONE5 soundcard we use provides four half-duplex devices only—the LynxONE
analog output, the LynxONE analog input, the LynxONE digital output, and the
LynxONE digital input—which make it unusable with RAT.

Thus, the main goal of our work is to implement the RAT-HD (RAT with Half-
Duplex devices support)—to modify the original RAT’s architecture and GUI in
order to make it supporting both full-duplex and half-duplex audio devices, and to
enable its users to choose the recording and playback audio devices separately.

2 RAT Architecture

The RAT’s architecture comprises three separate processes—the media-engine, which
is responsible for media transport and rendering, the user-interface, which provides
a graphical user interface, and the controller, which coordinates the previous two.
The RAT is invoked by starting the controller, which in turn starts new processes
for the media-engine and user-interface. Once started, all the three processes syn-
chronize using the Mbus mechanism (see later) and the media-engine in cooperation
with the audio subsystem starts to report its capabilities and its status to the user-
interface, that uses this information to build appropriate menus for the options
that can be configured. Once this setup-phase finishes, the user-interface reacts to
user interaction by sending appropriate Mbus messages to the media-engine, and
the media-engine reports events to the user-interface (again, using the Mbus mes-
sages). [6]

5http://www.lynxstudio.com/product_detail.asp?i=7

2

http://www.lynxstudio.com/product_detail.asp?i=7


Figure 1: The main screen and audio devices’ selection screen of the original RAT.

The mentioned Mbus mechanism [6] is a form of inter-process communication
proposed by Colin Perkins and Jorg Ott. It is claimed to be a lightweight, message
oriented infrastructure for ad-hoc composition of heterogeneous components.

An Mbus message contains a header and a body. The header part defines the
source and destination address, while the latter one contains the message, which has
to be delivered to the particular process. The messages are in the form of strings
and a function maps them into C function calls at the destination.

Concerning the RAT’s audio subsystem, the media-engine process communicates
with all the audiosystems available on the particular system, and discovers all the
provided full-duplex audio devices. Once discovered, the audio device requested by
the user is opened and appropriately set; after that, it can be used both for a voice
capture and/or playback.

3



3 RAT Architecture Modifications

To enrich the RAT with desired features we have downloaded its latest version
(4.4.01) from the public SVN repository6 and identified all the necessary modifica-
tions. We aimed to minimize the amount of necessary changes, and especially to
avoid audio subsystem’s/drivers’ API changes.

Even though the RAT supports many audiosystems (see the Section 1), for the
initial RAT-HD version we have decided to support just the OSS audiosystem (espe-
cially because of its direct support for the LynxONE soundcard we have intended to
use). Nevertheless, the other audio systems should remain functional, however, they
require a full-duplex device to be chosen (identified by the recording audio device).

As depicted in the rest of this section, the modifications, which had to be made
in order to reach the desired goal, affected all the three RAT’s components:

audio subsystem / OSS driver modifications

• the audio desc t type, which serves as a unique handle identifying the audio
devices, and which is originally of the int type, has been modified into the
structure having r and w items (both of which having the int type) identifying
the read and write devices separately. This has allowed us to identify both
the devices without any needs to change the functions’ prototypes7 and to
deliver this information into the OSS driver layer, where the functions are
able to apply the required operation just to the device they are related to
(for example, the oss audio set igain relates just to the read audio device,
while, e.g., the oss audio open function relates to both the read and write
audio devices). Thus, almost no functions’ duplications/device treatments
need not to be performed on the higher layers.

• the change of the audio desc t type has subsequently caused the necessity
to change the type of the descriptor item of the audio device details t

structure—its type has been changed from the audio desc t type into the
int type, since the structure describes just a single audio device available
in the system and thus the audio desc t type now describing two devices
simultaneously has been undesirable.

• according to both the types’ changes, all the functions from the audio.c file
have been subjected to deep study and modified when necessary.

• similarly, all the functions from the auddev.c file have been revised and mod-
ified in order to cope with the audio desc t and audio device details t

types change.

6http://mediatools.cs.ucl.ac.uk/nets/mmedia/wiki/SvnDev#Developerinformation
7In fact, a single function’s prototype had to be changed—the argument of the function

audio if dev name, which serves for discovering the name of the particular audio device, had to
be changed from the audio desc t type (now describing two devices) into the int type (describing
just a single device, whose name the function should return).

4

http://mediatools.cs.ucl.ac.uk/nets/mmedia/wiki/SvnDev#Developerinformation


• the most changes related to these layers have been performed in the OSS
driver layer (the file auddev oss.c): besides the modifications related to both
the types’ changes, which had to be performed on all the functions, a few
functions had to be modified in order to handle both the read and write devices
separately (e.g., the oss audio open function), and to take the half-duplex
devices into account (e.g., the oss audio init function).

• moreover, since the RAT’s OSS driver supposes to have the mixer devices
closely related to the audio devices (i.e., to have the mixer device for the
/dev/dspX audio device accessible through the /dev/mixerX file), and since
e.g. the LynxONE soundcard provides just a single mixer device for all the
four half-duplex audio devices, we have had to revise the OSS driver code
in order to cope with this situation. We have found out, that such relation
cannot be supposed at all, as claimed in the OSS programmers guide [9]; thus,
the OSS driver code has been modified in order to control the mixer device
through the audio devices’ descriptors (the recommended way to cope with
such a situation).

• last, but not least, the function setting the non-blocking access to the audio
devices (oss audio non block) has been modified to perform no action. In-
stead, the devices are being opened with the O NONBLOCK flag, which is the
recommended way as denoted in the OSS programmers guide [9].

media-engine modifications

• because of the audio subsystem modifications and the mentioned types’ changes,
all the audio subsystem functions’ calls have been revised and appropriately
modified,

• the mbus engine.c file has been modified in order to provide the user-interface
with read and write audio devices separately (via appropriate Mbus messages),

• the mbus engine.c file has been enriched with the callbacks processing another
two Mbus messages (audio.device.r, audio.device.w) delivering the chosen
audio devices from the GUI, and later registering them in the RAT’s audio
subsystem,

• the settings.c file has been modified so that the requested audio read and
write devices can be retained throughout the sessions (the devices are saved
into the audioDeviceR and audioDeviceW items).

user-interface modifications

• the RAT-HD’s GUI (more precisely, the Audio screen from the Options win-
dow) has been enriched with the possibility to choose the separate read and
write audio devices from appropriate list boxes,

5



• regarding the communication from the media-engine to the user-interface,
the set of original Mbus messages has been enriched with a few messages
(audio.devices.flush.r, audio.devices.flush.w, audio.devices.add.r,
and audio.devices.add.w) providing the available audio devices to the user-
interface,

• regarding the communication from the user-interface process to the media-
engine process, the Mbus messages have been enriched with two another mes-
sages (audio.device.r, and audio.device.w) providing the chosen audio
devices to the media engine,

• all the functions handling the modified/additional Mbus messages have been
appropriately modified.

3.1 Restrictions and Further Issues

Nevertheless, the first version of the RAT-HD has a few more or less important
restrictions and issues, most of which we plan to solve in the future:

• In spite of the fact that the original RAT supports many audio systems (Alsa,
OSS, NetBSD audio, etc.) simultaneously—i.e., it is able to detect and use
any of the provided devices at a time—the RAT-HD requires both the chosen
read and write devices to be provided by the same audio system. Even though
this restriction could be more or less easily overcome, we have decided not to
support choosing the read and write audio devices from different audio systems
especially because of many problems it may produce.

• Currently, just the OSS audio system is fully supported by the RAT-HD. In
the future we would like to add the half-duplex devices support at least to the
other most important ones, i.e., Alsa and Win32 audio.

• The RAT-HD enables the users to choose just a single sample rate and a single
number of channels for both the read and write audio devices. Again, even
though this could be easily overcome, we have decided to keep it especially
because of the problems, which the different sample rates for read and write
audio devices may produce8.

• In the current version of RAT-HD, the media-engine obtains just a single list
of available audio devices consisting of both read and write devices without
any capability indicators (i.e., read-only device, read/write device, write-only
device). Thus, the user has to choose the proper recording/playback audio
device from the lists, which, however, contain all the recording-only, record-
ing/playback, and playback-only audio devices altogether.

8In fact, even two RATs remotely communicating with different sample rates cause many prob-
lems and serious audio quality degradations.

6



Figure 2: The main screen and audio devices’ selection screen of the RAT-HD.

In fact, we haven’t implemented a devices’ separation based on their capa-
bilities into the current version, since it requires changing the API between
the RAT’s audio subsystem and the audio drivers, which we have decided to
avoid. Nevertheless, we have already modified the “media-engine ↔ GUI ”
communication to be prepared for such a separation, and thus just the “audio
subsystem ↔ media-engine” communication has to be modified in order to
provide the user with two lists of just read-capable and write-capable audio
devices.

• The audio devices’ names detection in the OSS driver is another challenge for
the future. The original RAT obtains the devices’ names from their dedicated
mixer device (in fact, it obtains mixer devices’ names), which is not suitable

7



for the soundcards providing several half-duplex devices controlled by a single
mixer device (e.g., the LynxONE), because all the audio devices would have
the same name, which is, however, used as a unique device identifier identifying
the device(s) selected by the user.

In the future we would like to overcome this issue by a detection of the audio
devices’ real names (not the mixers’ names); current RAT-HD implementation
uses the mixers’ names, which are supplemented by a number indicating the
audio device sequence in the system (i.e., the X from the /dev/dspX).

4 Conclusions

In this technical report we have described the architecture modifications, which
we have made in order to allow the Robust Audio Tool (RAT) to support both
full-duplex and half-duplex audio devices, and which further enable its users to
choose the recording and playback audio devices from the RAT’s GUI separately9—
see the Figure 2. This additional functionality not only increases the RAT-HD’s
flexibility related to audio devices’ selection, but makes it especially able to support
professional sound cards, which often provide just half-duplex audio devices, and
which the original RAT was unable to make use of.

The RAT-HD has been subjected to a set of tests, which have indicated that it
is fully usable in real situations—we were able to choose an arbitrary combination
of full-duplex/half-duplex audio devices provided by the used soundcards without
any perceptible problems. All the tests were performed on the Intel Pentium 4
machine with 2.00 GHz CPU and 768 MB of RAM; the installed operating system
was Ubuntu 8.04.3 LTS with 2.6.24 kernel. There were two soundcards installed
in the system—the LynxONE and Intel ICH4 AC’97 Audio Controllers10—both of
which were controlled by a single audiosystem: the OSS version 4.2.

Concerning the future challenges, we would like to solve the issue of read/write
devices detection (see the Section 3.1)—both the capabilities detection and the
proper name detection. Moreover, we would like to add the support for half-duplex
devices to another RAT’s audiosystems drivers, like Alsa and/or Win32 audio.

Acknowledgement
This work has been supported by the research intent Optical Network of National
Research and Its New Applications, MŠM 6383917201, funded by the Ministry of
Education, Youth and Sports of the Czech Republic. Moreover, we would like to
express our thanks to Petr Holub, whose initial work in RAT’s OSS driver modifica-
tions related to the LynxONE soundcard support made integrating its support into
the RAT-HD easier.

9The source codes of the RAT-HD are available for download at
https://www.sitola.cz/igrid/index.php/RAT

10The test have been successfully performed with the Sound Blaster Audigy ZS2 soundcard as
well.

8

https://www.sitola.cz/igrid/index.php/RAT


References

[1] Julian Highfield and Kristian Hasler. Whiteboard (WBD).
http://www-mice.cs.ucl.ac.uk/multimedia/software/wbd/, 2009.

[2] Petr Holub and Eva Hladká. Active Elements for High-Definition Video Distribu-
tion. In Network and Parallel Computing (NPC 2006), pages 27–36, University
of Tokio, Japan, 2006.

[3] Petr Holub, Eva Hladká, Jǐŕı Denemark, and Tomáš Rebok. Active Elements
for High-Definition Video Distribution. In ICT 2006, 13th International Confer-
ence on Telecommunications, pages 1–4, Funchal, Madeira: University of Aveiro,
Portugal, March 2006.

[4] Piers O’Hanlon, Kristian Hasler, Doug Kossovic, Socrates Varakliotis, Soo-
Hyun, Mark Handley, Isador Kouvelas, Barz Hsu, John Brezak, and Mark S.
Petrovic. Videoconferencing Tool (VIC).
http://mediatools.cs.ucl.ac.uk/nets/mmedia/wiki/VicWiki#

VideoconferencingToolVIC, 2009.

[5] Piers O’Hanlon, Socrates Varakliotis, and Doug Kossovic et al. Robust Audio
Tool (RAT).
http://mediatools.cs.ucl.ac.uk/nets/mmedia/wiki/RatWiki#

RobustAudioToolRAT, 2009.

[6] Jorg Ott, Dirk Kutscher, and Colin Perkins. The Message Bus: A Platform for
Component-based Conferencing Applications. In Proceedings of CBG2000: The
CSCW2000 workshop on Component-based Groupware, 2000.

[7] Colin Perkins. Robust Audio Tool.
http://csperkins.org/research/rat/index.html, 2009.

[8] Zdeněk Salvet. Enhanced UDP packet reflector for unfriendly environments.
Technical Report 16/2001, CESNET, 2001.

[9] 4Front Technologies. OSS Programmers Guide.
http://www.opensound.com/pguide/index.html, 2009.

9

http://www-mice.cs.ucl.ac.uk/multimedia/software/wbd/
http://mediatools.cs.ucl.ac.uk/nets/mmedia/wiki/VicWiki#VideoconferencingToolVIC
http://mediatools.cs.ucl.ac.uk/nets/mmedia/wiki/VicWiki#VideoconferencingToolVIC
http://mediatools.cs.ucl.ac.uk/nets/mmedia/wiki/RatWiki#RobustAudioToolRAT
http://mediatools.cs.ucl.ac.uk/nets/mmedia/wiki/RatWiki#RobustAudioToolRAT
http://csperkins.org/research/rat/index.html
http://www.opensound.com/pguide/index.html

	Introduction
	RAT Architecture
	RAT Architecture Modifications
	Restrictions and Further Issues

	Conclusions

